A Middleware Architecture for Distributed

Systems Management *

Jesus Salceda, Ivan Diaz, Juan Tourino and Ramén Doallo

Department of Electronics and Systems, University of A Coruna, Campus de

Elvinia s/n, 15071 A Coruna, Spain

Abstract

This paper presents a middleware solution for global management of any kind of
distributed system, such as networks of PCs/workstations, clusters or server farms.
Our approach lies in an object-oriented software architecture that models all kind of
management information using the Common Information Model (CIM) developed
by the Distributed Management Task Force (DMTF). The classes and attributes
obtained after the modeling process are mapped to a Lightweight Directory Access
Protocol (LDAP) repository. This paper discusses the key features of our middle-
ware that allows that any element (physical, logical, device, user or system) can
be managed using a network-oriented and topology-independent approach. A rep-
resentative example of management domain illustrates the procedures followed to

build management applications using our middleware architecture.

Key words: Middleware, Management, Distributed Systems, CIM, LDAP

* This work was funded by the Galician Government (Xunta de Galicia, Projects

PGIDT01-PXI110501PR and PGIDIT02-PXI10502IF)
Email address: jsalceda@udc.es (Jesis Salceda).

Preprint submitted to Elsevier Science 31 July 2003

1 Introduction

The management of distributed systems requires a set of tedious and time-
consuming administration tasks (eg, OS installation, starting processes, pack-
age installation) to get the system up and running. Although some of these
tasks can be performed in a semi-automatic way by using daemons for schedul-
ing commands and shell scripts, all of them lack an overall management view.
In this paper, we propose a middleware architecture for the management of
distributed systems as a single system. Our research began in early 2001 with
the aim of systematizing the management of the great variety of computing
resources available at the School of Computer Science at the University of A
Corufia. Our proposal uses an object-oriented model to represent management
information as it provides support for abstraction and classification, inheri-
tance, extensibility and the ability to depict any kind of element. Dependen-
cies and relationships among different managed elements, like those existing
among physical, logical, device, user or system, are also taken into account in
our architecture. All management information is stored without redundancies
into a common, network-accessible repository, where any managed element
can query, update or retrieve the information stored in the repository through
a common interface. Another key factor is the capability to systematically de-
velop any kind of management task by using a common application program
interface. Our procedure consists of the following steps: first, the problem do-
main and the management information are determined; next, this information
is mapped to the network repository; finally, the set of tasks to manage each
element are developed by application programmers or system administrators,

allowing an easy integration into a more global application.

2 Related Work

Since networks of workstations have been widely deployed in academic and
business environments, several well-known solutions (NIS, DNS ...) have been
used to simplify administration tasks, but they focus on a limited scope. Any
information infrastructure for global management must comply with several
functional and architectural requirements. In [9] we can find a complete set of

properties that are summarized in the following points:

e Global Repository: Configuration and administration data may be gener-
ated by different sources. However, global management needs a common
distributed repository of information that allows decentralized maintenance
through a lightweight network protocol and a common programming inter-
face.

e Common Information and Naming Model: The management information
model must be able to identify and model any element and the relationships
among them in a similar way. Moreover, it should allow to straightforwardly
incorporate any additional source of information in a near future.

e Scalability and cost: The management architecture should be able to scale
up to a large number of managed elements, while performance, deployability,

access and security cannot be affected by a given network topology.

Although the complex problem of distributed systems management has been
a subject of intense research in the last years, the solutions we have evaluated,
most of them focused on cluster management, do not comply with all the re-

quirements described above. The Open Source Cluster Application Resources

(OSCAR) [18], a cluster toolkit that includes several tools (SIS [8], LUI [17]

and C3 [10]) for managing clusters, uses a database only to store unrelated
information (and thus unable to represent relationships) about initial installa-
tion and network configuration for each node. LCFG [1] automatically installs
and manages the configuration of a large number of UNIX systems in a GRID
infrastructure through a configuration language and a central repository of
configuration specifications. However, this tool cannot be easily adapted to
any network topology and uses a flat information model (key-value pairs)
unable to model multiple dependencies. A related configuration tool is the
NPACI Rocks Toolkit [13]. Although it uses a configuration infrastructure
through well-defined inheritance properties, it focuses on complete OS instal-
lation, avoiding individual management of configuration files. It thus follows a
heavyweight approach that limits deployment and performance when the num-
ber of managed systems increases. A management package was designed at Ar-
gonne National Lab to automate administration of the Chiba City cluster [16].
The software architecture focuses on the three-level hierarchical network of the
cluster, and it is very difficult to extend to other network topologies. Moreover,
it includes only management information that could conceivably change using
single key-value pair records in a central database, which becomes a major
bottleneck. Finally, a powerful cluster management approach has been imple-
mented and deployed at Sandia National Labs [15]. It uses an object-oriented
software architecture rooted by a Device Class, a persistent object storage
to represent the physical and network topology of the cluster, and a set of
layered management tools. However, this package has several drawbacks: the
class hierarchy of this model focuses only on hardware devices, it is unable
to represent complex relationships among elements, the naming model is not
wide enough to refer unambiguously to any managed element, and there is

not a distributed repository.

System—Level Layer

T
|
|
‘ M anaged] E Managed E Managed | | | Management
‘
|
|
|

User—Level Layer

Element Element Element Application

CAppIication Program Interface)

Application Layer

Common Information M odel
Modeling Layer

LDAP
Distributed Storage Layer ’ Database

Fig. 1. Functional layers

3 Software Architecture Overview

We propose a software architecture to manage distributed systems that com-
plies with the requirements enumerated in the previous section. Our proposal
consists of the functional layers shown in Figure 1. First of all, we believe
it is essential to make use of some kind of persistent object storage, like a
database. This database stores and integrates all management information
coming from several sources (ie, physical and logical elements). Moreover, it
allows an easy integration of the upper layers needed to build management
tools. Although the objects are stored in a database, we need a Distributed
Storage Layer to overcome the drawbacks that databases have to provide a
distributed repository in a transparent way. We have used the Lightweight
Directory Access Protocol (LDAP) [12], a protocol for accessing directory ser-
vices based on the client-server model, to build a network-oriented repository
due to the capabilities for building a topology-independent distributed storage.
LDAP directories define the information that can be stored in them through
the schema [14]. In order to use LDAP directories as a management informa-

tion repository, we must extend the standard schema to include all attribute

types and objectclasses necessary to represent this information, and this is
the object of our Modeling Layer. The Distributed Management Task Force
(DMTF) [5] has developed a basic information model known as Common In-
formation Model (CIM) [2] that attempts to unify and extend the existing ins-
trumentation and management standards using object-oriented design. CIM
provides a mechanism for modeling information independently of any repos-
itory, although there is a set of guidelines [6] [7] to aid in mapping objects
to directories that support the LDAP protocol and the X.500 model [11] (a
successful implementation of this model over an LDAP directory is the DEN
initiative [4]). CIM allows to build our management information model by
providing us a common information and naming model. We have used the
classes developed by DMTF for modeling the elements but, if there is not an
appropriate class, we extend the model to include all the classes needed to
manage the elements; in any case, we have to map all classes to the LDAP
directory. The layered structure of our approach and the special characteris-
tics of LDAP directories, in terms of distribution, allows to address scalability
by enabling to build virtually any kind of aggregation of managed elements
on a global distributed repository through delegation, or implementing high

availability using superior capabilities like LDAPv3 replication [19].

The two upper level layers have to do with application development. Our
software architecture considers two types of applications. On the one hand,
System-Level applications are the set of procedures responsible for exchanging
information between the managed element (eg, services, network interfaces)
and the instances of these elements stored in the repository. Moreover, these
applications modify the behavior of the managed element when the manage-

ment information is updated in the repository. In general, the System-Level

Layer includes all kind of tasks we need to communicate the repository and
the managed element. On the other hand, the User-Level Layer provides a
single view for distributed systems management, as well as a high level of ab-
straction by hiding the special characteristics of the managed elements. For
instance, at this level we can answer questions like “is the CERT Advisory
CA-2002-20 installed in system A (RedHat 7.0), B (SuSE 8.1), C (Solaris 8)
or D (AIX)?”

4 Modeling Layer

We have modeled a restricted management domain to illustrate the possibil-
ities of our middleware. This domain tries to comprise a basic set of man-
agement tasks that system administrators need to perform on each man-
aged element: (a) Network Interface properties: Access (MAC) and Network
(IP) Layers, (b) Services started using System V-style init scripts (stored in
/etc/rc?.d directories); and (c) Services started from the inetd superdae-
mon (stored in /etc/inetd.conf file). The first step to model our example
domain is to build the information model to be mapped to the LDAP reposi-
tory from DMTF-defined CIM classes. First, we must identify and check the
CIM specifications to detect if the managed element is already modeled; oth-
erwise, we have to extend the model to include it. Next, the CIM classes are
mapped to the LDAP repository. The following description of our modeling
is not intended to be comprehensive, but rather a proof of concept of the key

features we have used.

CIM has several classes to model network interfaces. The CIM_IPProtocol-

Endpoint and CIM_LANFEndpoint classes are used to store the information

CIM_ServiceA ccessPoint

[Key] String CreationClassName

[Key] String Name

[Key] String SystemCreationClassName
[Key] String SystemName *

i

CIM_Protocol Endpoint

String Name CIM BindsTo CIM_BindsToL ANEndpoint
String NameFormat il

String Protocol Type
String OtherTypeDescription | *

Uint16 FrameType

CIM_IPProtocol Endpoint CIM_LANEndpoint

String Address String LANID

String SubnetMask Uint16 LANType

Uint16 AddressType String OtherLANType *
Uint16 |PVersionSupport String MACAddress

String AliasAddresses]]
String GroupAddresses[]
Uint32 MaxDataSize

Fig. 2. CIM specification of network interfaces

about the communication points across which data can be sent to or re-
ceived from the host at IP and MAC layers. The CIM_BindsToLANFEndpoint
class makes explicit the dependency relationship of the IP layer on the MAC
layer. As can be seen in Figure 2, the CIM_IPProtocolEndpoint class con-
tains the attributes we need to model the information about the IP layer of
the interface: IP address, subnet mask, address type and IP version support.
The CIM_LANEndpoint class includes the LAN identifier, LAN type, MAC
address, alias MAC address, multicast address, and the maximum transfer
unit of this interface. Both are subclasses of CIM_ProtocolEndpoint, and they
inherit other properties from it, like the protocol type or the name. More-
over, both classes are related through the CIM_BindsToLANEndpoint asso-
ciation class to model the IP-MAC layer encapsulation. Next, we need to
map these classes to the LDAP repository. As we can see in Figure 3, the at-
tributes are mapped directly, but the classes need to be adapted. As these

classes are concrete, our LDAP schema needs: (a) an abstract LDAP ob-

dim1ServiceAccessPoint
MAY : dim1BindsTo
UTF8-string{256} dimCreationClassName
UTF8-string{256} dimName
dim1ProtocolEndpoint dim1BindsToLANEndpoint
MAY UTPS-string dimFrameT
UTF8-string{256} dimName string dimFrameType
UTF8-string{64} dimNameFormat ?
UTF8-string dimProtocol Type
UTF8-string dimOtherTypeDescription dim1BindsToLANEndpointinstance
* MAY :
DN dimBindsToLANEndpointAntecedentRef
DN dimBindsToLANEndpointDependentRef
dim1IPProtocolEndpoint dim1LANEnNdpoint
MAY : MAY :
UTF8-string dimAddress UTF8-string dImLANID
UTF8-string dimSubnetMask Integer dImLANTYpe - -
. dim1BindsToLANEndpointHelper
UTF8-string dimAddressType UTF8-string dimOtherLANTYype P P
UTF8-string dimIPVersionSupport UTF8-string dimMACAddress MAY :
UTF8-string dimAliasAddresses DN dimBindsToLANEndpointHelperRef
A UTF8-string dimGroupAddresses
UTF8-string dimMaxDataSize
A
dim1IPProtocolEndpointAuxClass dIm1LANEndpointAuxClass

dim1IPProtocolEndpointinstance

dim1LANEnNdpointinstance

Fig. 3. LDAP objectclasses for network interfaces

jectclass, dim1IPProtocolEndpoint, that inherits directly the attributes from
the CIM_IPProtocolEndpoint class; (b) an auxiliary class, dlm1IPProtocolEnd-
pointAuzClass, that allows to extend the original CIM model with additional
attributes (if necessary); and (c) a directly instantiable structural class, dim1IP-
ProtocolEndpointInstance, used to create instances of IP interfaces. In a similar
way, we have extended the LDAP schema to model MAC interfaces by us-
ing three objectclasses: dim1LANFEndpoint, dim1LANFEndpointAuzClass and
dlm1LANEndpointinstance. The dependency between the IP and MAC inter-
face layers needs a more complex set of LDAP objectclasses and attributes to
map the CIM_BindsToL ANFEndpoint class. This dependency is a non-abstract
association with a many-to-many cardinality. As depicted in Figure 3, we need
a structural LDAP class, dim1BindsToLANEndpoint, that contains the single

property of the association, dimFrameType (the framing method), as an op-

CIM_ComputerSystem CIM_Service
String NameFormat [Key] String CreationClassName
String Otherldentifyinglnfo [Key] String Name
String IdentifyingDescriptions String StartMode
Uint16 Dedicated Boolean Started
* [Propagated] String SystemCreationClassName

[Propagated] String SystemName

Uint32 StartService()
Uint32 StopService()

DSM_CSRunLevel Service *

String RunLevel
String Action
Uint16 ActionNumber

DSM_inetdService

[Key] String Protocol
String SocketType
String Wait

Uint16 Waitlnstances
String User

String Command

1 | DSM_RunLevelService

Fig. 4. CIM-extended classes of System V and inetd services

tional attribute. We also need a directly instantiable class, dim1BindsToLAN-
EndpointInstance (subclassed from the structural class), that includes the
dimBindsToLANEndpointAntecedentRef/DependentRef attributes, that is, the
lower and upper layers of this association, respectively. Moreover, since this
association is a separate object in the directory, the auxiliary class dim1Binds-
ToLANEndpointHelper must be attached to each instance of object belong-
ing to this association. This helper class includes a single optional attribute,
dimBindsToLANFEndpointHelperRef, that points to the particular instance of

the association in which the LAN interface participates.

As explained in Section 3, a key characteristic of CIM is the capability to
include additional schemas to represent management information. This is the
case with System V-style init scripts and services started from the inetd
superdaemon. Unlike network interfaces, it was necessary to extend the model
to include management information about these services. As shown in Fig-
ure 4, our starting point is the CIM_Service abstract class from the CIM Core

Model [3] that contains the information necessary to represent the function-

10

ality provided by a device or software element. We have introduced three new
classes: DSM_RunLevelService and DSM_CSRunLevelService to model init
scripts executed on a computer system (CIM_ComputerSystem class) for a
certain runlevel; and DSM _inetdService to model inetd services configured
by the /etc/inetd.conf file (the DSM prefix stands for Distributed Systems
Management). The LDAP mapping of all these classes is similar to that fol-

lowed by network interfaces.

The next step in our Modeling Layer is to provide an unambiguous identifica-
tion of the managed elements. As the common naming model we have used is
based on the LDAP naming model [14], we need a method to adapt CIM to the
LDAP namespace. The basic unit of this namespace is the entry, an instance
of one or more objectclasses. Each entry is uniquely identified by a Relative
Distinguished Name (RDN) built with at least one of its attributes; in our
case, the attribute ordered CIMKeys, constructed by ordering the CIM keys of
the entry. The concatenation of the RDNs of all parent nodes in the Directory
Information Tree (DIT) builds the Distinguished Name (DN) of the entry to
identify the concrete element. The DIT of the LDAP namespace allows to
model any kind of relationship, such as the CIM class hierarchy; in this case,
the propagated keys may be omitted in the LDAP namespace. The following
example illustrates the common naming model for an Ethernet interface eth0
in a host named yogsototh. The modeling of the interface results in a set of
LDAP entries to represent elements and associations. As shown in Figure 5, we
have used three LDAP entries to store the information about ethO: IP Layer
(entry numbered as 1), MAC Layer (entry 2) and IP-MAC layer encapsulation

(entry 3). Several key aspects can be extracted from them:

e The RDN of the interface ethO in the IP and MAC layers (entries 1 and

11

dn: orderedCimK eys="dlm1I PProtocol Endpoint.dimCreationClassName=dlm1I PProtocol EndPoint,dimName=eth0",
orderedCimK eys="dsm1PCComputer System.dImCreationClassName=dsm1PCComputerSystem,
dimName=yogsototh",dc=udc

objectclass: dim1lPProtocol Endpointlnstance

objectclass: dim1BindsToL ANEndpointHel per

dimName: ethO

dimAddress: 192.168.113.129

dimSubnetMask: 255.255.255.0

dimIPVersionSupport: IPv4 Only

dimCreationClassName: dim1lPProtocol Endpoint

dimBindsToL ANEndpointHel perRef: orderedCimK eys="dIm1BindsToL ANEndpoint.dimBindsToLAN
EndpointAntecedentRef=orderedCimK eys=dim1L ANEndpoint.dimCreationClassName=dim1L ANEndpoint,
dimName=eth0,orderedCimK eys=dsm1PCComputerSystem.dimCreationClassName=dsm1PCComputer System,
dimName=yogsototh,dc=udc,dimBindsT oL ANEndpointDependentRef=orderedCimK eys=dim1I PProtocol Endpoint.
dimCreationClassName=dim1I PProtocol Endpoint,dlmName=eth0,orderedCimK eys=dsm1PCComputer System.
dimCreationClassName=dsm1PCComputer System,dlmName=yogsototh,dc=udc" ,dc=udc

@ dn: orderedCimK eys="dlm1L ANEndpoint.dlmCreationClassName=dim1L ANEndpoint,dimName=eth0",
orderedCimK eys="dsm1PCComputer System.dImCreationClassName=dsm1PCComputerSystem,

dimName=yogsotoh",dc=udc

objectclass: dim1L ANEndpointinstance

objectclass: dim1BindsToL ANEndpointHel per

dimName: ethO

dimMacAddress: 00:50:56:DC:B2:43

dimLANType: 2

dimMaxDataSize; 1500

dimCreationClassName: dim1LANEndpointInstance

dimBindsToL ANEndpointHel perRef: orderedCimK eys="dIm1BindsToL ANEndpoint.dimBindsToLAN
EndpointAntecedentRef=orderedCimK eys=dim1L ANEndpoint.dimCreationClassName=dim1L ANEndpoint,
dimName=eth0,orderedCimK eys=dsm1PCComputer System.dlmCreationClassName=dsm1PCComputerSystem,
dimName=yogsototh,dc=udc,dimBindsT oL ANEndpointDependentRef=orderedCimK eys=dim1I PProtocol Endpoint.
dimCreationClassName=dim1I PProtocol Endpoint,dlmName=eth0,orderedCimK eys=dsm1PCComputer System.
dimCreationClassName=dsm1PCComputer System,dlmName=yogsototh,dc=udc" ,dc=udc

@ dn: orderedCimK eys="dIm1BindsToL ANEndpoint.dimBindsToL ANEndpointAntecedentRef=
orderedCimK eys=dim1L ANEndpoint.dimCreationClassName=dim1L ANEndpoint,dimName=ethO,

orderedCimK eys=dsm1PCComputer System.dimCreationClassName=dsm1PCComputer System,
dimName=yogsototh,dc=udc,dimBindsT oL ANEndpointDependentRef=
orderedCimK eys=dim1I PProtocol Endpoint.dlmCreationClassName=dim1I PProtocol Endpoint, dlmName=eth0,
orderedCimK eys=dsm1PCComputer System.dImCreationClassName=dsm1PCComputer System,
dimName=yogsototh,dc=udc",dc=udc

objectclass: dimBindsToLANENdpointInstance

dimBindsToL ANEndPointDependentRef: orderedCimK eys=dim1IPProtocol Endpoint.dlmCreationClassName=
dim1I PProtocol Endpoint,dimName=eth0, orderedCimK eys=dsm1PCComputer System.dlmCreationClassName=
dsm1PCComputerSystem,dimName=yogsototh,dc=udc

dimBindsT oL ANEndpointAntecedentRef: orderedCimKeys=dim1L ANEndpoint.dimCreationClassName=
dim1L ANEndpoint,dimName=ethO, orderedCimK eys=dsm1PCComputer System.dimCreationClassName=
dsm1PCComputer System,dimName=yogstototh,dc=udc

dimFrameType: Ethernet

Fig. 5. LDAP network interface entries

2) is built using its key attributes: dimCreationClassName and dlmName,
both inherited from dim1ServiceAccessPoint objectclass (see Figure 3).

e The DN of entries 1 and 2 uses the DIT to represent the weak association
between the interface and the computer system (the PC host). The root of
these entries is the internet domain where both elements are included.

e The properties of the interface are represented by values of the attributes
using a consistent naming model.

e The key attributes of the association between the two layers of the interface

12

ethO (entry 3) are the DNs of the antecedent and dependent instances.
e Each ethO entry (entries 1 and 2) has a field dim1BindsToLANEndpoint-

HelperRef with the DN of the association where this entry is included.

5 Application Layer

Once we have the basis of our architecture, it is necessary to develop a set
of programs to address the two basic issues of building management applica-
tions in our approach: the bidirectional information transfer between managed
elements and LDAP repository (System-Level Application), and the specific

management application (User-Level Application).

The System-Level Layer consists of a set of procedures written in Perl. They
transfer configuration information, both from files and system administration
commands located in the managed system, to the LDAP repository. In the
other way, there are procedures that maintain the local system information
consistent with the information updates performed in the directory. So, this
layer converts the raw information stored in each local system into an object-
oriented format (objectclasses and attributes) suitable for the Modeling Layer.
Although the nature of the information stored in each system is diverse it
comes, in general, from at least one of the following sources: configuration
files, output from command line executions, and directory structures. The
most important way of maintaining management information are configuration
files stored in local filesystems. As these plain files have little structure (or
none), we cannot use generic parsers to extract the information they store
and thus, they must be approached in an individual manner. In these files

the line is usually the basic information unit, so that they must be processed

13

sub registerService {

$Name = shift; SocketType = shift;

$Protocol = shift; $wait = shift;

$User = shift; $Command = shift;

$ldap = Net::LDAP->new($machine) or die "$@";
authQ);

$ock=""dsm1PCComputerSystem.dImCreationClassName=dsm1PCComputerSystem,
dImName=""_$fgdnHostName;
$PCdn=""orderedCimKeys=\""",$ock. ""\"",dc=udc";

$dn=""orderedCimKeys=\""dsmlinetdService.dImCreationClassName=
dsmlinetdService,dImName=""_$Name.",dImProtocol=.$Protocol."\"," .$PCdn;
$mesg = $ldap—>add ($dn,

attrs => [objectClass => ’dsmlinetdService”’,

dImCreationClassName => “dsmlinetdService’,
dImName => $Name,

dsmSocketType => $SocketType,

dsmProtocol => $Protocol,

dsmWait => $Wait;

dsmUser => $User;

dsmCommand => $Command]);

$mesg—>code && die $mesg—>error;

DSM: :Uti I : :makeAuxAssociation ($ldap,$PCdn,$dn,
dImHostedServiceAntecedentRef”,
>dImHostedServiceDependentRef”,
*dImlHostedService’);

Fig. 6. Perl code of registerService function

line by line to capture the configuration information from the corresponding
fields. Once the line information is stored in variables, we need to create the
corresponding LDAP entries. The function registerService shown in Figure 6 is
an example of this process for the /etc/inetd.conf file. This function opens
an LDAP object (see fifth line of the code) and builds its DN through the
orderedCimKeys attribute (see Section 4). Next, the function adds the entry
using the $ldap->add method and, finally, the associations for this object
are defined. The second source to extract configuration information is the
output of configuration commands and programs. This is a very useful way
to get data from the OS kernel, or to gather information coming from several
different sources (like the ps command that collects username, PID, command
name ..., or the ifconfig command for network interface configuration). The
third source is the directory structure. A representative example is a service
started by init scripts. The procedure followed to capture information from

these two sources is very similar to that used for configuration files.

14

Regarding the other way of information transfer (repository-to-element), the
procedures that transfer any change performed in the LDAP directory to the
managed elements follow a two-phase approach: (a) notify to the managed
elements, and (b) do the appropriate actions in them. The notification, de-
pending on the managed element and the kind of change, can be made by
triggering or polling. In our domain, the kind of actions to be taken in the
managed element are, for instance: update of configuration information (files,
directories or commands), start/stop of individual services or set of services,

reload or restart of daemons, or start/stop of groups of systems.

The objective of the middleware described so far is to provide a common in-
frastructure to develop applications for managing distributed systems as a
single system. In order to complete the cycle we have developed an example of
user-level application in Java with the following functionalities: (a) Selection
of managed elements: interfaces, services; (b) Selection of hosts (individual or
groups) to be managed; (c) Network interface management: query information,
start/stop network interfaces, check status; (d) Service management (System
V and inetd): query information, start/stop services, check status, change
runlevel (including system shutdown). Although not described in the paper,
ACL (Access Control List) management is also included: query information,
add/delete/update access control entries in hosts.allow/deny files. Regard-
ing implementation issues, the application uses a tree abstraction through the
JTreeModel class that allows to construct a tree dynamically from the direc-
tory information, and represent it in terms of real world objects, like network
interfaces or services. The application provides a view (reasonably close to the
CIM view) that conceals details like for instance the internals of the various

types of services, while the user is only concerned with their management.

15

6 Conclusions and Future Work

We have proposed a middleware architecture to manage distributed systems
that follows a multilayer approach: (a) a Distributed Storage Layer, a network-
oriented LDAP-based storage where persistent objects that represent man-
agement information are stored; (b) a Modeling Layer based on the extensible
CIM to model the information, including the relationships among the managed
elements; and (c¢) an Application Layer where the low-level transfers between
the directory and the managed elements (System-Level Layer), and customized
high-level management applications (User-Level Layer) can be developed us-
ing a common application program interface. The layered architecture hides
the different way operating systems manage similar elements through the use
of a common information and naming model. A representative management
domain was used to illustrate the main procedures of our approach: mapping
of CIM objects to an LDAP repository, extension of the model to include
new elements to be managed, development of reusable functions to collect
management information from different sources, and management tasks that
involve dependencies among elements (eg, IP address modification, start/stop

services).

Future work focuses on extending the management domain by including new
elements (and their corresponding relationships) such as hardware devices,
file systems and volumes, software packages, system processes, log events,
users/groups information for authentication purposes, and network security.
We are also considering the use of XML as a common intermediate language
in all middleware layers (CIM schemas, LDAP entries, system-level /user-level

applications) to improve the processing of the management information.

16

References

[1]

[2]

[3]

[10]

P. Anderson and A. Scobie. LCFG: The Next Generation. UKUUG

LISA/Winter Conference. London, UK, February 2002.

DMTF. Common Information Model (CIM) Standards.

http://www.dmtf.org/standards/standard cim.php

DMTF. Core MOF Specification 2.6. June 2002.
http://www.dmtf.org/standards/documents/CIM/CIM_Schema26/CIM_

Core26 .mof

DMTF. Directory Enabled Network (DEN) Initiative.

http://www.dmtf.org/standards/standard den.php
DMTF. Distributed Management Task Force Inc. http://www.dmtf.org

DMTF. Guidelines for CIM-to-LDAP Directory Mappings. May 2000.

http://www.dmtf.org/standards/documents/DEN/DSP0100.pdf

DMTF. LDAP Schema for the CIM v2.4 Core Information Model v1.0. May

2002. http://www.dmtf.org/standards/documents/DEN/DSP0O117 .pdf

B. Finley, S. Dague, M. Chase-Salerno and D. Frazier. System Installation

Suite (SIS). http://sisuite.org

S. Fitzgerald, 1. Foster, C. Kesselman, G. von Laszewski, W. Smith and S.
Tuecke. A Directory Service for Configuring High-Performance Distributed
Computations. 6th IEEE International Symposium on High Performance

Distributed Computing, pages 365-375. Portland, OR, August 1997.

A. Geist, M. Brim, B. Leuthke, S. Scott and T. Naughton. Cluster
Command and Control (C3) Project. Oak Ridge National Laboratory.

http://www.csm.ornl.gov/torc/c3

17

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Heker, J. Reynolds and C. Weider. RFC 1309 - Technical Overview of
Directory Services using the X.500 Protocol.

http://www.ietf.org/rfc/rfc1309.txt

J. Hodges and R. Morgan. RFC 3377 - Lightweight Directory Access Protocol

(v3): Technical Specification. http://www.ietf.org/rfc/rfc3377.txt

M.J. Katz, P.M. Papadopoulos and G. Bruno. Leveraging Standard Core
Technologies to Programmatically Build Linux Cluster Appliances. 4th IEEE
International Conference on Cluster Computing, pages 47-53. Chicago, 1L,

September 2002.

K.D. Keilenga. Internet Draft - LDAP: Directory Information Models.
http://www.ietf.org/internet-drafts/draft-ietf-ldapbis-models-

06.txt

J.H. Laros, L. Ward, N.W. Dauchy, R. Brightwell, T. Hudson and R.
Klundt. An Extensible, Portable, Scalable Cluster Management Software

Architecture. 4th IEEE International Conference on Cluster Computing,

pages 287-295. Chicago, IL, September 2002.

J.P. Navarro, R. Evard, D. Nurmi and N. Desai. Scalable Cluster
Administration - Chiba City I Approach and Lessons Learned. 4th TEEE

International Conference on Cluster Computing, pages 215-221. Chicago, IL,

September 2002.

Open Cluster Group. LUI: Linux Utility for Cluster Installation.

http://oss.software.ibm.com/developerworks/projects/lui

J. Squyres, S. Scott, M. Chase-Salerno, S. Dague and N. Gorsuch (Open
Cluster Group). Open Source Cluster Application Resources (OSCAR).

http://oscar.sourceforge.net

18

[19] E. Stokes, R. Weiser, R. Moats and R. Huber. RFC 3384 -
Lightweight Directory Access Protocol (version 3) Replication Requirements.

http://www.ietf.org/rfc/rfc3384.txt

19

