
M

C
J
a

b

a

A
R
R
A
A

K
M
S
F
M

1

d
2
r
s
n
e
d
m
y
[
r
a
p
o

t
r
f

h
1

Journal of Computational Science 17 (2016) 609–619

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

ultithreaded and Spark parallelization of feature selection filters

arlos Eiras-Francoa,∗, Verónica Bolón-Canedoa, Sabela Ramosb,
orge González-Domínguezb, Amparo Alonso-Betanzosa, Juan Touriñob

Computer Science Dept., University of A Coruña, 15071 A Coruña, Spain
Dept. of Electronics and Systems, University of A Coruña, 15071 A Coruña, Spain

 r t i c l e i n f o

rticle history:
eceived 29 October 2015
eceived in revised form 22 April 2016
ccepted 7 July 2016
vailable online 18 July 2016

eywords:
ultithreading

a b s t r a c t

Vast amounts of data are generated every day, constituting a volume that is challenging to analyze. Tech-
niques such as feature selection are advisable when tackling large datasets. Among the tools that provide
this functionality, Weka is one of the most popular ones, although the implementations it provides strug-
gle when processing large datasets, requiring excessive times to be practical. Parallel processing can help
alleviate this problem, effectively allowing users to work with Big Data. The computational power of
multicore machines can be harnessed by using multithreading and distributed programming, effectively
helping to tackle larger problems. Both these techniques can dramatically speed up the feature selection
park
eature selection
achine learning

process allowing users to work with larger datasets. The reimplementation of four popular feature selec-
tion algorithms included in Weka is the focus of this work. Multithreaded implementations previously not
included in Weka as well as parallel Spark implementations were developed for each algorithm. Exper-
imental results obtained from tests on real-world datasets show that the new versions offer significant
reductions in processing times.

© 2016 Elsevier B.V. All rights reserved.
. Introduction

Massive amounts of data are generated on a daily basis nowa-
ays. As an example, IBM estimated that in the time span between
010 and 2012, 90% of the data worldwide were produced at a
ate of 2.5 exabytes per day [1]. This data-generating trend has
parked interest in data analytics, which in turn has created the
eed for new tools, algorithms and methodologies that can cope
fficiently with such massive amounts of data. Consequently, the
imensionality (samples × features) of datasets being analyzed in
achine learning problems has been steadily growing in the last

ears. Taking the datasets posted in the popular libSVM Database
2] as a reference, their size has increased five hundredfold. This
esults in a challenge for traditional machine learning algorithms,
s overfitting can negatively impact their performance, more com-
lex models are harder to interpret and both speed and efficiency
f these algorithms decrease as the dimensionality increases.

This situation has spawned a number of techniques designed

o deal with big dimensionality datasets. This dimensionality can
efer to samples, features or both. In the case in which we con-
ront with datasets containing numerous features, feature selection

∗ Corresponding author.
E-mail address: carlos.eiras.franco@udc.es (C. Eiras-Franco).

ttp://dx.doi.org/10.1016/j.jocs.2016.07.002
877-7503/© 2016 Elsevier B.V. All rights reserved.
techniques are mandatory. Feature selection consists in the process
of determining the relevant features and trying to remove as much
irrelevant and redundant information as possible, without leading
to a degradation in the classification performance.

The Weka (Waikato Environment for Knowledge Analysis) suite
[3] is a very popular machine learning platform that has been
downloaded over six million times. It can be used as a stand-alone
application or imported as a library from the user’s code. Fea-
ture selection is among its functionalities with several algorithms
available to the user. This ample range of algorithms included in
Weka makes its use widespread among data scientists for data
analysis and for the development and testing of new algorithms.
In addition, the fact that Weka runs on Java and is designed with
single-machine setups in mind, makes it very suitable for the aver-
age user. Nevertheless, some of the implementations in Weka still
struggle when processing large datasets, requiring very long exe-
cution times, effectively limiting the size of the datasets that can
be analyzed with it. An improvement in the time efficiency of these
algorithms will enable its many users to process large datasets that
up to now were out of reach for these implementations.

On the other hand, and to specifically address the Big Data issue,

new parallel programming solutions have been created in the last
decade, such as MapReduce [4], that was implemented in the open-
source solution Apache Hadoop [5] or, more recently, Apache Spark
[6], which aimed at being a solution to Big Data analysis. The advent

dx.doi.org/10.1016/j.jocs.2016.07.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2016.07.002&domain=pdf
mailto:carlos.eiras.franco@udc.es
dx.doi.org/10.1016/j.jocs.2016.07.002

6 mputational Science 17 (2016) 609–619

o
l
a
t
r
s

g
m
t
h
o
n
f

t
s
a
r
a
u
m

a
r
o
i

2

d
i
t
a
fi
w
p

2

i
a
t
e
t
t
t
d

•

•

•

(
w

i

Table 1
Theoretical complexity of the four feature selection methods focus of this work
(where m is the number of examples and n is the number of attributes).

Method Complexity

InfoGain nm
RELIEF-F nm2
10 C. Eiras-Franco et al. / Journal of Co

f these new technologies led to the creation of parallel machine
earning libraries: Mahout [7] that runs on top of Apache Hadoop,
nd MLlib [8] that uses Apache Spark, are some examples. Although
hese libraries contain a wide variety of machine learning algo-
ithms, they do not provide many options when it comes to feature
election.

Spark is designed for distributed computing and can achieve
reat performance processing large amounts of data, but few imple-
entations of feature selection algorithms are available. Moreover,

o be able to use the Mahout or MLlib libraries, the user needs to
ave a Hadoop or Spark installation and, although they can run
n single-machine environments, a cluster of computers would be
eeded to fully exploit these libraries, which is not always available

or regular users.
The aim of this work is to obtain new implementations of

hese popular feature selection algorithms that are able to tackle
izable problems in different environments and find out the suit-
bility of these implementations to different amounts of computing
esources1. To this end, multithreaded implementations for Weka
nd distributed versions in Spark will be proposed. This will allow
sers to analyze larger datasets in shorter times and choose the
ost adequate implementation to the resources available to them.
This paper is organized as follows: Sections 2 and 3 are

n overview of feature selection and parallelization approaches
espectively. Section 4 describes the algorithms that are the object
f this paper. The results of our tests are presented in Section 5 and
n Section 6 we discuss our conclusions.

. Feature selection

Feature selection is the name given to the process that
etects relevant features and discards those that are redundant or

rrelevant. The goal of this technique is to obtain a subset of fea-
ures that has minimum degradation of performance when used by

 classifier while describing the given problem properly. It simpli-
es the dataset both in size and in complexity of understanding [9],
hich leads to simpler and faster classification algorithms, better
roblem comprehension and reduced storage requirements.

.1. Feature selection methods

Feature selection methods can be classified into two categories:
ndividual evaluators or subset evaluators. Individual evaluators
re also called rankers and they assign a weight to each attribute
hat represents its relevance. Subset evaluators, on the contrary,
mploy a search strategy to determine a candidate subset of fea-
ures and have the advantage of removing redundant attributes at
he cost of being more complex. According to the relationship with
he learning method used, feature selection methods can also be
ivided as follows [10]:

Filters are methods that are applied independently of the induc-
tion process. They are, in general, computationally inexpensive.
Wrappers use the induction algorithm as a black box to evaluate
the fitness of each candidate subset. This results in algorithms
that are computationally demanding but more accurate.
Embedded methods perform feature selection in the process of
training and are typically specific to given learning algorithms.
In this paper, three of the most commonly used filter methods
InfoGain, RELIEF-F and CFS) and an embedded method (SVM-RFE)
ere selected for reimplementation using a parallel approach. The

1 The implementations are available for download at http://www.lidiagroup.org/
ndex.php/en/materials-en.html.
CFS n2m
SVM-RFE max(n, m)m2

first two filters are rankers that return an order for the features to
be discarded below a threshold of the user’s choice and they are
included in the Weka suite:

• Information Gain (InfoGain) [11] is a filter that computes the
mutual information of the different features with respect to the
class and provides an ordered ranking of all the features according
to this value.

• RELIEF-F [12] is a heuristic estimator built upon the RELIEF
algorithm [13] that deals efficiently with noisy and incomplete
datasets and with multiclass problems. It works by locating its
nearest neighbors for each instance from the same and opposite
class and updating the weights of each feature accordingly.

The remaining two algorithms are subset evaluators. To per-
form feature selection they search through the space of all possible
attribute combinations for the set that offers a better score accord-
ing to a heuristic method that depends on the algorithm.

• CFS [14] is a subset evaluator independent from the induction
process that tries to identify correlations between attributes and
the class.

• SVM-RFE [15], which stands for Support Vector Machine Recur-
sive Feature Elimination is an embedded method that filters the
attributes iteratively using a SVM at each stage to rank them.

The choice of these algorithms was made to obtain a set of tools
that are well suited to a wide range of datasets. CFS and InfoGain
perform well when the data has a large number of attributes when
compared to the number of instances and are very fast, but they do
not perform as well when there is noise in the inputs. RELIEF-F is
very good at eliminating redundant and correlated features, even
when there is noise in the inputs and attributes are non-linear, but
it is much slower and does not perform well when few examples
are available. Lastly, SVM-RFE detects correlation and redundancy
even with few examples, but it performs poorly when there is noise
in the inputs and is very time consuming [9].

Table 1 shows the theoretical complexity of the four methods
described above.

3. Parallel approaches

The main purpose of this work is to parallelize the standard
implementations of RELIEF-F, InfoGain, CFS and SVM-RFE. In order
to empower Weka users, multithreaded implementations are pro-
posed. Furthermore, to enable users that can access computational
clusters, we developed and tested Spark versions of the algorithms.

3.1. Multithreaded processing

Multithreading allows users to take advantage of multicore sys-
tems without imposing the overhead of creating multiple processes

and providing direct access to a common address space. However
the creation and management of threads introduces a computa-
tional overhead that makes the use of threads suboptimal when
the tasks parallelized have low complexity.

http://www.lidiagroup.org/index.php/en/materials-en.html
http://www.lidiagroup.org/index.php/en/materials-en.html
http://www.lidiagroup.org/index.php/en/materials-en.html
http://www.lidiagroup.org/index.php/en/materials-en.html
http://www.lidiagroup.org/index.php/en/materials-en.html
http://www.lidiagroup.org/index.php/en/materials-en.html
http://www.lidiagroup.org/index.php/en/materials-en.html
http://www.lidiagroup.org/index.php/en/materials-en.html
http://www.lidiagroup.org/index.php/en/materials-en.html
http://www.lidiagroup.org/index.php/en/materials-en.html

mputa

t
t
n
i
t
w
m

3

a
[
v
h
a

t
a
R
m
r
T
R
c
n
a
c
a
i
p

H
a
f
t
R
r
u
b
u
S
a

m
t
a
a
e
r
t
s
t
a

d
t
r

4

O

C. Eiras-Franco et al. / Journal of Co

Java provides parallel programming support in the core of
he language. This feature enables programmers to write code
hat exploits multithreading without the need to use any exter-
al library. Since Weka is written in Java, we use this support to

mplement our multithreaded parallel codes. We divide the fea-
ure selection algorithms in tasks that can be performed in parallel,
hich allows us to exploit the computational power of multicore
achines.

.2. Parallelization with Apache Spark

To alleviate the difficulties of developing distributed programs,
 team of Google engineers developed the MapReduce framework
4] that handles the common aspects of distributed programs, pro-
iding the programmer with a tool to run parallel programs without
aving to worry about anything but the implementation of the
lgorithm.

The programming paradigm introduced by MapReduce requires
he tasks to be divided in two separate steps: the Map phase, that
pplies a function given by the user to every element; and the
educe phase, that combines the resulting values. Oftentimes ele-
ents consist of key-value pairs and the Reduce phase merges

esults that have the same key, although this is not mandatory.
he abstraction resulting of decomposing a job in simple Map and
educe functions allows the framework to divide both data and
ode across the computing nodes, a task performed by a master
ode. Typically, the framework splits the data in as many chunks
s nodes are available, distributes it among them so that each node
an apply the Map function to the assigned elements. The results
re then rearranged by the master node, using a key partition-
ng scheme, and distributed again back to the nodes so that they
erform the Reduce phase.

MapReduce was implemented in the open-source framework
adoop [5] and rapidly achieved great popularity for its reli-
bility and scalability. Still, this direct implementation left room
or an important improvement that was later implemented by
he Spark [6] framework: the transition between the Map and
educe phase requires data to be shuffled by the master node and
edistributed to the nodes, in a time-consuming process that is
nnecessary when several Map transformations need to be applied
efore the Reduce phase or in iterative algorithms. By avoiding
nneeded data movement and introducing other optimizations
park performs several times faster than Hadoop for certain
pplications [16].

Spark allows the programmer to manage work distribution by
eans of using Resilient Distributed Datasets (RDDs), an abstrac-

ion that represents a read-only set of objects that is distributed
cross multiple machines. RDDs can be transformed, performing
n operation on each element, which can be done in parallel in
ach node, and they can be reduced, combining elements, which
equires that the whole dataset is shuffled and redistributed to
he nodes in a time-consuming process. Additionally, data can be
ent to the nodes to work with by using broadcast variables, and
he worker nodes can write increments to special variables named
ccumulators.

We decomposed the feature selection algorithms in indepen-
ent tasks for a Spark implementation that will allow the user to
ake advantage of a computer cluster to process large datasets in
educed time.
. Implemented algorithms

Four algorithms (listed in Table 2) were the object of this work.
f the 8 possible implementations (a Weka multithreaded and a
tional Science 17 (2016) 609–619 611

Spark version for each algorithm), 2 were already available and 6
were developed as part of this work.

4.1. RELIEF-F algorithm

The original RELIEF-F algorithm [12] loops through a set of
instances R finding for each instance its k nearest neighbors from
the same class, called nearest hits H, and the k nearest neighbors
from each different class, which are denoted as nearest misses M(C).
When all neighbors are found, the weight for each attribute W[A]
is updated by subtracting the weighted average distance (com-
puted with the diff function, that returns the Manhattan distance
between two instances) of each hit H and adding, for each class
C other than R’s, the weighted average of the distance to each
miss M(C). When computing averages, distances are weighted by
the probability P of the class and divided by the total number of
instances m.

Regarding the multithreaded implementation, the job was
divided into as many tasks as threads we wanted to use, then a
thread was created for each task. This approach avoided the need
for a thread pooler to manage the execution of threads. This process
is detailed in Algorithm 1.

The process of finding the nearest neighbors for each instance
(by means of the loop described between Lines 2 and 7 of Algorithm
1) is very time consuming since it requires comparing it with all
other instances. This search can be executed independently for
each instance and therefore it can be performed in parallel with
no synchronization issues.

Algorithm 1. Pseudo-code for multithreaded RELIEF-F

612 C. Eiras-Franco et al. / Journal of Computa

Table 2
Summary of algorithms in this paper.

Algorithm Multithreaded Weka Spark implementation

RELIEF-F New implementation New implementation
InfoGain New implementation Available in Spark packages
CFS Included in Weka New implementation
SVM-RFE New implementation New implementation

w
t
e
t
c
o
t
h

4

(
T
a
c

I

l
p
i
d
t
a

d
f
u
h

2
a
d
a
i
o
c
p
t
p

u
e
1
1
r

The InfoGain algorithm is already included in the Spark Infothe-
In our Spark implementation the work is split in the same
ay: each node computes the nearest neighbors to a subset of

he examples. Every possible pairing of example indices is gen-
rated and stored in a Spark RDD, which is then distributed to
he nodes. The whole dataset is sent to the nodes as a broad-
ast variable, so that they use it as a lookup table. This approach
btains a considerable speed gain, but effectively limits the size of
he dataset to the maximum size a Spark broadcast variable can
andle.

.2. InfoGain algorithm

The InfoGain algorithm assigns the weight (W) of each attribute
A) by contrasting its information gain with respect to the class.
o calculate this value, the entropy (H) of each class given the
ttribute in question is subtracted from the entropy of that
lass:

nfoGain(Class, Attribute) = H(Class) − H(Class|Attribute) (1)

Entropy of a variable is defined as −
∑

ip(i) * log(p(i)), where i
oops through every possible value of the variable. The observed
robability of a variable taking a value is represented by p(i), and it

s calculated as the ratio of cases where the variable takes that value
ivided by the total number of appearances of the given variable. If
he variables are not discrete, the dataset needs to be preprocessed
s described in further detail in Section 5.1.

Weka implements this calculation by looping through all the
ataset counting the number of appearances of every possible value
or each attribute, storing the counts in an array. Then this array is
sed to compute the information gain of each attribute. This process
as linear complexity.

In our proposed multithreaded solution, detailed in Algorithm
, the counting of every possible value is performed in parallel for

 subset of the samples (Line 4). This requires an additional step,
escribed in Line 7, that combines the counts of each thread into

 global count. Since this division is performed on the number of
nstances, it will be more effective when the dataset has numer-
us instances. For small datasets, the additional accumulative step
an take more time than the one that is gained from counting in
arallel, but for large datasets the time required to add up the par-
ial counts should be negligible when compared to the counting
rocess.

Lastly, the process of obtaining the information gain val-
es from the counts can also be performed independently for
ach attribute, therefore it can be computed in parallel (Line

1). The functions Entropy and ConditionalEntropy shown in Line
4 represent the calculation of H(Class) and H(Class|Attribute)
espectively.
tional Science 17 (2016) 609–619

Algorithm 2. Pseudo-code for multithreaded InfoGain

Again, the use of a thread pooler was avoided by creating as
many tasks as threads are available.
oretic Feature Selection package [17] that implements several
algorithms that share a common structure by the use of a frame-
work [18]. This was the version tested in this paper.

mputa

4

a
t
t
c
T
t
p
i
s
s
l
m

s
t
m
4
t
f
t
l
e
a
A

A

C. Eiras-Franco et al. / Journal of Co

.3. CFS algorithm

CFS is a subset evaluator that uses the correlation between
ttributes to obtain a score for a group of attributes. The compu-
ational cost for this algorithm is greatly influenced by the need
o obtain the matrix that contains the Pearson product–moment
orrelation coefficients between every possible pair of attributes.
he time complexity of this process grows quadratically with
he number of attributes and linearly with the amount of sam-
les, which means that most of time of the CFS algorithm

s spent in this process. Once the correlation matrix and the
tandard deviations of each attribute have been computed, CFS
earches the space containing every possible attribute subset
ooking for one that obtains the highest score in its evaluation

ethod.
The search algorithms used can vary in their complexity, from

imple greedy algorithms as the one described in Algorithm 3
hat simply adds to the set the best candidate at each step, to

ore complex backtracking ones like BestFirst, listed in Algorithm
. This search method keeps a list with every candidate set
hat it encounters ordered by their score in the evaluating
unction. For each candidate, it explores every possible addi-
ion to the set, adding the resulting new set to the candidate
ist if its score is high enough. This process goes on until the
xamination of candidate sets renders no new candidates for

 given number of iterations (named MAX STALE in Line 6 of
lgorithm 4).

lgorithm 3. Greedy stepwise search used in CFS
tional Science 17 (2016) 609–619 613

Algorithm 4. Best-first search used in CFS
The evaluation function used by CFS is described in Algorithm
5. It increases when the attributes are highly correlated with the
class and it decreases when any attribute is highly correlated with
other attributes that are already in the set.

6 mputa

A

d
m
o
m
w

l
(
d

4

n
c
w
T
a
a
1
t
r
(

o
a
o
c
i
d
c
m
t
n

t
o

14 C. Eiras-Franco et al. / Journal of Co

lgorithm 5. Subset evaluation in CFS

In the existing Weka implementation, which is included by
efault in the Weka suite, the computation of the correlation
atrix is performed in parallel by several threads, although this

nly occurs when the user chooses to precompute the correlation
atrix. Otherwise the matrix is computed in an on-demand basis,
hich offers better performance.

Our proposed Spark implementation first performs the corre-
ation matrix computation in parallel and then the search process
either BestFirst or GreedyStepwise) is performed, evaluating the
ifferent candidate subsets also in parallel.

.4. SVM-RFE algorithm

To perform feature selection, the SVM Recursive Feature Elimi-
ation (SVM-RFE) algorithm makes use of support vector machine
lassifiers to assign a weight to each attribute. Starting with the
hole set of attributes, an SVM is trained to classify binary datasets.

he weights assigned to the features by the SVM are then examined
nd those with the lowest absolute value are removed from the set
nd added to the ranking in the lowest positions, as shown in Line
6 of Algorithm 6 (the number of elements added at each itera-
ion can be configured with the STEP variable). Then the process is
epeated for the remaining attributes until the ranking is complete
Line 12).

In order to work with multiclass datasets, a different ranking is
btained for each class (Line 3) using a one-vs-all approach, that is,
ssuming that those elements pertaining to a class other than the
ne being analyzed are negative examples. Then those rankings are
ombined by looping through them and adding to the final rank-
ng the best of each list, then the second best and so on, in a loop
escribed in Line 5. The process for obtaining the ranking for each
lass can be done in parallel, and this is the approach taken in our
ultithreaded Weka implementation. This allows the new version

o take much less time when processing multiclass datasets, while

ot hindering the performance when used with binary datasets.

In the Spark implementation, by contrast, it is the process of
raining the SVMs that is done in parallel, allowing to save time both
n multiclass and binary datasets. This can be done by using the
tional Science 17 (2016) 609–619

existing SVM with stochastic gradient descent (SGD) implementa-
tion in Spark’s MLlib library. SGD is an incremental algorithm that is
well suited for parallelization. Weka employs Sequential Minimal
Optimization (SMO [19]), an analytical method that is generally
faster, but much harder to parallelize. This change in the nature of
the SVM training algorithm results in a selected set of features that
can be different from that obtained with Weka.

Algorithm 6. Pseudo-code for multithr. SVM-RFE

C. Eiras-Franco et al. / Journal of Computational Science 17 (2016) 609–619 615

Table 3
Dataset description.

Dataset Features Instances Classes

Higgs 28 11,000,000 2
Epsilon 2000 500,000 2
KDD99 41 4,898,430 23
Isolet 617 7900 27
USPS 256 7291 10
Poker 10 1,025,010 10
KDDB 29,890,095 19,264,097 2

5

d
t
a
s
n
d
u
t
s

i
t
b
p
t
j
p
r
m
c
s
a
t
s

W
w
H
n
t
f
P
s
T
c
d
K
p
S
n
m
c
i
o
a
o
f

Table 4
Computer cluster description.

16 nodes consisting of:

Processor: 2 × Intel Xeon E5-2660 Sandy Bridge-EP
at 2.20Ghz

Cores: 8 per processor (16 per node)
Threads: 2 per core (total of 32 threads per node)
Hard drive: 1 × SSD 480GB SATA3
RAM: 64 GB DDR3 1600 MHz
Network: InfiniBand FDR &Gigabit Ethernet

Table 5
Execution times of the discretization algorithm implementations.

Runtime (s)

1 core 16 cores Speed-up

Higgs 1585 1709 0.93
KDD99 316 196 1.61
Epsilon 1976 881 2.24

ages [29]. Table 5 shows the execution times for the sequential
implementation compared to the multithreaded one when run on
. Experimental results

The goal of this work is to take advantage of multithreaded and
istributed processing to speed up feature selection. Hence, the fea-
ures selected and the weights assigned by the new versions of the
lgorithms are the same as those obtained with the original ver-
ions, excluding any differences that may arise due to rounding or
umeric processing (except in the case of SVM-RFE that obtains
ifferent results in Spark due to the change of the nature of the
nderlying SVM). Consequently, these new versions do not modify
he classification accuracy, but aim at being able to perform feature
election in a reasonable, shorter time.

It is worth mentioning that the time complexity of the stud-
ed algorithms is very variable. Furthermore, their impact on the
otal time needed for the whole feature selection process can also
e significantly different. Since one of the goals of this work is to
rovide a reference guide to help users select one implementa-
ion, we have decided to list the total execution time instead of
ust the time invested in the part of the algorithm that actually
erforms feature selection because this will give users a more accu-
ate idea of what to expect from a certain implementation. There
ay be some use cases where the algorithm is used in a different

ontext (for instance, loading a dataset once and then performing
everal iterations of a feature selection algorithm), that take more
dvantage from the gain associated with the parallel implementa-
ion. Nonetheless, the most common use case is performing feature
election on a dataset contained in a file.

In order to provide a variety of scenarios to test the proposed
eka and Spark implementations, seven high dimensional datasets
ere chosen (see their characteristics in Table 3). We used the
iggs dataset, which consists of 11,000,000 instances with 28
umerical attributes that represent kinematic properties of par-
icles detected in an accelerator [20]. The second dataset used,
rom here on called Epsilon, was artificially created in 2008 for the
ascal Large Scale Learning Challenge [21]. A preprocessed ver-
ion available on the LibSVM dataset repository [22] was used.
his dataset consists of 500,000 instances that have 2000 numeri-
al features each. Since both datasets mentioned above are binary
atasets, one additional dataset with several classes was selected,
DD99 [23]. It contains close to 5 million samples of 41 connection
arameters each that are categorized in 23 different classes. Also,
VMs require that datasets have numeric attributes only, so any
on-numeric attribute needs to be transformed. Therefore, three
ulticlass datasets with numeric features were chosen: Isolet [24]

onsists of almost 8000 instances with 617 attributes each, divided
n 27 classes. USPS [25] is a dataset containing over 7000 examples
f elements with 256 attributes, representing handwritten char-

cters, with 10 different labels. Lastly, the Poker dataset contains
ver a million elements with 10 features each, classified in 10 dif-
erent classes, representing possible hands in the poker card game.
An additional larger dataset named KDDB consisting of 19 million
samples with 30 million attributes was included as an example of
very high dimensionality [26].

The experiments were run on up to 8 nodes of a computer
cluster. Each node has the specifications described in Table 4. The
Weka version used was 3.7.12 running on OpenJDK 1.7.0 55. The OS
installed in this machine was Rocks 6.1, based on CentOS 6.x. Spark
applications were run using the MapReduce Evaluator (MREv) tool,
that unifies the configuration of various distributed computing
environments [27].

To measure the performance of the new versions of the algo-
rithms comparatively to the original implementations we used
the speed-up measure, defined as the ratio between the original
sequential time and the parallel one.

5.1. On the preprocessing of the datasets: parallelization of a
discretization algorithm

Some feature selection algorithms, such as InfoGain, require the
attributes of the dataset to be discrete. This specification often
forces the user to preprocess the dataset in order to obtain a
modified version with discrete features. Weka provides an imple-
mentation of the Fayyad-Irani Minimum Descriptive Length (MDL)
algorithm [28] that fulfills that purpose, although this process can
be very time consuming. The goal of this algorithm is to trans-
form real-valued attributes to discrete ones while maintaining as
much information as possible. To achieve this, real values need to be
assigned to different bins that cover the whole range of values of the
attribute. The size, number, and distribution of the bins is decided
by the algorithm in a long process that is performed independently
for each attribute. This allows us to obtain better performance by
using separate threads to compute different attributes, as described
in Algorithm 7. A similar parallelization with Spark has not been
addressed in this section as it was already available in Spark pack-
a 16 core machine using the three more general datasets (with and
without numerical features, as explained at the beginning of this
section).

6 mputational Science 17 (2016) 609–619

A

a
s
T
i
t
d
t
o
w

5

(
t
D
c
f
i
i
b

t
d
l
d
a
H
o

t
e
o

16 C. Eiras-Franco et al. / Journal of Co

lgorithm 7. Fayyad-Irani discretization

Although the computing process is independent for each thread,
 separate copy of the dataset needs to be allocated for each task,
ince its first step is to order it by the attribute being examined.
he overhead created by copying the dataset can be quite large
f the dataset is sizable, but in most cases it is not as large as
he gain obtained by computing in parallel. In our experiments all
atasets but one obtained a favorable speed-up, independently of
heir size. The new version performed worse than the sequential
ne for the Higgs dataset, due to its large size and few attributes,
hich amounts to costly copies of the dataset and less parallelism.

.2. Analysis of the RELIEF-F implementations

The good adaptability of RELIEF-F to a parallel environment
which is often referred to as being “embarrassingly parallel”)
ranslates into significant decreases in terms of execution time.
espite this improvement, RELIEF-F’s complexity grows quadrati-
ally with the number of samples and linearly with the number of
eatures and this still makes it yield long times when the number of
nstances of the dataset is very high. However, our multithreaded
mplementation can take advantage of machines with a large num-
er of cores, decreasing computational times.

In order to be able to make a comparison with the sequen-
ial version, we have used reduced versions of the largest general
atasets (with numerical and non-numerical features) when ana-

yzing the RELIEF-F implementation. For the Epsilon and the KDD99
atasets the top 10% of the instances were used, amounting to

 total of 50,000 and almost 500,000 instances, respectively. The
iggs dataset had to be further trimmed, using the top 4%, consisting
f 440,000 instances.
We performed tests with different number of threads processing
he same datasets in order to illustrate the relation between the
xecution time and the number of threads employed. The results
f these experiments are shown in Fig. 1. The node used to run
Fig. 1. Speed-up vs number of threads for RELIEF-F.

the benchmarks offered 16 cores, each one capable of running two
threads using HyperThreading. When 16 threads are used, they are
mapped to different cores with exclusive use of resources, obtain-
ing maximum performance. On the contrary, when we request the
use of 32 threads, they are placed two on each core, competing
for the core resources [30]. This results in a degradation of per-
formance that, in our best case, barely improves on the use of 16
threads. Therefore, all subsequent experiments were made using
just the 16 cores.

The left part of Table 6 lists the execution times of sequen-
tial and multithreaded Weka implementations. The multithreaded
version was executed using the 16 cores available. A significant
performance increase exists for all datasets. When the dataset
being analyzed is large, the time taken to manage threads becomes
irrelevant in comparison to the time gained by making computa-
tions in parallel. The multithreaded version of the algorithm was
able to process the large datasets between 12.6 and 16.7 times
faster than the sequential one. The good adaptability of this algo-
rithm to a parallel paradigm reflects in the superlinearity of the
speed-up obtained for the Higgs dataset.

For comparison purposes, Table 6 also shows the Spark execu-
tion times for different amount of cores. The Epsilon dataset was
chosen for this comparison since its execution time was high on
Weka and its size was suitable for the Spark implementation. As
discussed in Section 4.1, the Spark implementation of RELIEF-F
requires that the entire dataset is broadcast to all nodes. Good scal-
ability is observed when more nodes are added and, even with one
node (16 cores), the Spark implementation is more efficient than
the Weka one. To assess the advantage of using Spark and a com-
puter cluster vs Weka on a single machine, the speed-up shown as
⇑ is the best Spark result vs the multithreaded Weka result.

5.3. Analysis of the InfoGain implementations

The Weka implementation of the InfoGain feature selection
algorithm requires the attributes to be discrete, so it performs a
discretization process when needed before the feature selection is
started. This discretization is independent from the InfoGain algo-
rithm so, to eliminate its impact in the execution time and obtain a
more accurate comparison of the two versions of the algorithm, all
datasets used to test the InfoGain feature selector were discretized
beforehand using the same algorithm employed by Weka [28]. This

resulted in datasets that, in some cases, had several attributes with
constant value. Additionally, to speed up this process for users,
a multithreaded implementation of this algorithm is provided, as
described in Section 5.1.

C. Eiras-Franco et al. / Journal of Computational Science 17 (2016) 609–619 617

Table 6
Execution times of RELIEF-F implementations.a

Runtime (s)

Weka Spark

cores 1 16 Speed-up 16 32 64 128 Speed-up ⇑
Higgs (4%) 105,443 6328 16.7 – – – – – –
KDD99 (10%) 154,305 10,517 14.7 – – – – – –
Epsilon (10%) 84,149 6678 12.6 5382 2840 1076 608 8.85 10.98

a Speed-ups listed are 16 cores vs 1 core for Weka and 128 cores vs 16 cores for Spark. ⇑ indicates the speed-up for 128 cores using Spark vs 16 cores using Weka, that is,
the gain of the parallel approach.

Table 7
Execution times of InfoGain implementations.a

Runtime (s)

Weka Spark

cores 1 16 Speed-up 16 32 64 128 Speed-up ⇑
Higgs 204 192 1.06 578 375 353 173 3.34 1.11
Epsilon 458 424 1.08 1067 642 448 335 3.19 1.27
KDD99 145 140 1.04 – – – – – –
KDDB 200 192 1.04 631 500 384 407 1.55 0.47

a Speed-ups listed are 16 cores vs 1 core for Weka and 128 cores vs 16 cores for Spark. ⇑ indicates the speed-up for 128 cores using Spark vs 16 cores using Weka, that is,
the gain of the parallel approach.

Table 8
Execution times of CFS implementations.a

Runtime (s)

Weka Spark

cores 1 16 Speed-up 16 32 64 128 Speed-up ⇑
Higgs 1350 1173 1.15 110 98 95 91 1.21 12.89
Epsilon 7183 8642 0.83 579 438 356 324 1.79 26.67

park.

t

t
m
t

s
s
t
d
a
i
s
r
t
m
t
t
a

I
s
w
h

t
f
n
fi
d
m

shown in Table 9 (please note that in this case times marked with
− are executions that take more than three days). The different
a Speed-ups listed are 16 cores vs 1 core for Weka and 128 cores vs 16 cores for S
he gain of the parallel approach.

The left part of Table 7 shows the comparison of the Weka execu-
ion times between both versions of the algorithm (sequential and

ultithreaded using 16 cores) when run on the different datasets
hat have been previously discretized.

When put in relation with the whole execution time, the
peed improvement is negligible. Nevertheless, a deeper analy-
is of the implementation reveals that most of the time needed
o perform InfoGain feature selection in Weka is spent getting the
ataset ready, first reading it from disk and then checking that the
ttributes are fit for the algorithm. The feature selection process
tself takes a short time when compared to the total execution time,
o even a dramatic improvement in the time efficiency of the algo-
ithm would lead to modest speed-ups for datasets that take a long
ime to process. Nevertheless, as discussed earlier, some use cases

ay take advantage of the speed-up obtained when just comparing
he time devoted to the algorithm which, in the Weka implemen-
ation we are presenting, is close to the number of cores employed,
round 16 in this case.

The Spark implementation tested was the one included in the
nfoTheoretic Feature Selection Spark package [17]. Results can be
een in right part of Table 7. Instead of the KDD99 dataset, KDDB
as used to illustrate how this method is capable of handling very
igh dimensional datasets.

Although performance increases when adding more cores, for
he same number of cores the existing Spark implementation per-
orms much worse than Weka. This results in the need of more
odes to achieve the same times than in Weka, being highly inef-
cient in terms of resources. For this particular algorithm and

atasets it would be more advisable to use Weka on a single
achine rather than the existing Spark implementation.
⇑ indicates the speed-up for 128 cores using Spark vs 16 cores using Weka, that is,

5.4. Analysis of the CFS implementations

The existing multithreaded implementation of the CFS algo-
rithm included in Weka does not offer a significant improvement
over the sequential one, being even slower in some cases. This
is a result of the parallelization approach used, that requires that
the entire correlation matrix is precomputed beforehand, in con-
trast with the sequential version, that only calculates each value
when needed. Since the search method does not try every possi-
ble combination of attributes, oftentimes only a small fraction of
the correlation matrix needs to be computed. Avoiding to com-
pute these unnecessary values saves significant time that, in some
cases, results in smaller computation times than the ones obtained
by precomputing the entire correlation matrix with several cores.
Our Spark implementation computes the entire correlation matrix
every time, but it is still much more time-efficient than the Weka
one, as shown in Table 8. The computation time decreases as more
nodes are added which, when combined with the much better per-
formance than the Weka algorithm obtained for the same number
of cores, results in high speed-ups.

5.5. Analysis of the SVM-RFE implementations

Since the parallelization approach taken for the multithreaded
Weka implementation divides the work along classes, multiclass
datasets were needed for this experiment. Execution times are
SVM training algorithm used in Weka and Spark makes a real dif-
ference regarding the kind of dataset that can be tackled with each

618 C. Eiras-Franco et al. / Journal of Computational Science 17 (2016) 609–619

Table 9
Execution times of SVM-RFE implementations.a

Runtime (s)

Weka Spark

cores 1 16 Speed-up 16 32 64 128 Speed-up ⇑
Isolet 86,730 15,415 5.63 – – – – – –
USPS 10,098 2508 4.03 – – – – – –
Poker – – – 1229 1536 1220 1447 0.85 –
Poker (20%) 28,621 10,280 2.78 530 520 472 465 1.14 22.11

park.

t

i
v
w
t
c
a
T
l
a
f
l
c
t
d
l
n

6

f
t
p
u
r
(
d

m
s
n
i
m
m
m
t
fi
u
p
m
d
i
d
b

s
f
u
v
t
a
a

[

[

[

[

[

[

[

[

[

[

[

a Speed-ups listed are 16 cores vs 1 core for Weka and 128 cores vs 16 cores for S
he gain of the parallel approach.

mplementation. The Weka version (and thus our multithreaded
ersion), which uses SMO (see Section 4.4), performs really well
hen there is a large number of attributes and, therefore, the SVM

raining process has to be repeated a large number of times. In this
ase the approach used by the Spark version takes much longer,
s for every new training process the data needs to be shuffled.
his, in some cases, makes its use unfeasible (for instance, for Iso-

et and USPS datasets). On the contrary, when datasets have fewer
ttributes (such as Poker), the SVM training process is repeated
ewer times and SGD can be leveraged to train the model with a
arge number of examples in a much smaller time than SMO. This
learly differentiates both implementations in terms of the datasets
hat they handle efficiently. Table 9 shows how SGD is suitable for
atasets with a large number of attributes and few instances (Iso-

et and USPS), whereas SMO performs better when there is a large
umber of instances and fewer attributes (such as Poker).

. Conclusions

This work has explored new implementations of four popular
eature selection algorithms. We have proposed new versions that
ake advantage of multithreaded processing to speed up the com-
utation for their use in Weka and also distributed versions that
se Apache Spark, enabling users to tackle bigger datasets in a
easonable time. For those implementations that already existed
see Table 2), tests were performed to assess their suitability for
ifferent kinds of datasets.

The experimental results obtained show a significant improve-
ent in execution time for the RELIEF-F algorithm, achieving even

uperlinear speed-ups for large real-world datasets on a 16 core
ode, and scaling well in number of nodes for Spark. A considerable

mprovement was also obtained for a new distributed CFS imple-
entation in Apache Spark that largely outperforms the existing
ultithreaded version included in Weka, and scales well when
ore cores are added. A new multithreaded InfoGain implemen-

ation was developed and compared to the existing Spark one,
nding that its short execution times make the time gain obtained
sing a cluster less relevant, therefore advising the use of our pro-
osed implementation on a single computer. Lastly, a new SVM-RFE
ultithreaded implementation enables users to process multiclass

atasets up to four times faster than the sequential counterpart
ncluded in Weka, and a new Spark version allows the analysis of
atasets that because of their dimensions could not be processed
y Weka.

As future work, it would be interesting to explore different
ampling techniques and their effects on the features selected
or a variety of datasets, since this approach may offer a way to
se algorithms that are computationally demanding on reduced

ersions of large datasets. Also pursuing a RELIEF-F implementa-
ion with Spark that could handle larger datasets than the ones
t reach for the implementation presented in this paper would be
dvisable.

[

[

⇑ indicates the speed-up for 128 cores using Spark vs 16 cores using Weka, that is,

Acknowledgements

This work has been financed in part by Xunta de Galicia under
Research Network R2014/041 and project GRC2014/035, and by
Spanish Ministerio de Economía y Competitividad under projects
TIN2012-37954 and TIN-2015-65069-C2-1-R, partially funded by
FEDER funds of the European Union. V. Bolón-Canedo acknowl-
edges support of the Xunta de Galicia under postdoctoral Grant
code ED481B 2014/164-0. Additionally, the collaboration of Jorge
Veiga on setting up and using the MREv tool for Spark execution
was essential for this work.

References

[1] IBM Big Data, IBM – Bringing Big Data to the Enterprise, 2015 http://www-01.
ibm.com/software/data/bigdata/ (accessed 19.04.16).

[2] Chih-Chung Chang, Chih-Jen Lin, LIBSVM: a library for support vector
machines, ACM Trans. Intell. Syst. Technol. (TIST) 2 (3) (2011) 27.

[3] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, Ian H. Witten, The WEKA data mining software: an update, ACM
SIGKDD Explor. Newslett. 11 (1) (2009) 10–18.

[4] Jeffrey Dean, Sanjay Ghemawat, MapReduce: simplified data processing on
large clusters, Commun. ACM 51 (1) (2008) 107–113.

[5] Apache Hadoop Project, http://hadoop.apache.org/ (accessed 19.04.16).
[6] Apache Spark Lightning-fast cluster computing, https://spark.apache.org/

(accessed 19.04.16).
[7] Apache Mahout Project, http://mahout.apache.org/ (accessed 19.04.16).
[8] Machine Learning Library (MLlib) Guide, http://spark.apache.org/docs/latest/

mllib-guide.html, (accessed 19.04.16).
[9] Verónica Bolón-Canedo, Noelia Sánchez-Maro no, Alonso-Betanzos Amparo,

Feature Selection for High-Dimensional Data, Springer, 2015.
10] Isabelle Guyon, Feature Extraction: Foundations and Applications, vol. 207,

Springer Science & Business Media, 2006.
11] John Ross Quinlan, Induction of decision trees, Mach. Learn. 1 (1) (1986)

81–106.
12] Igor Kononenko, Estimating attributes: analysis and extensions of RELIEF, in:

Machine Learning: ECML-94, Springer, 1994, pp. 171–182.
13] Kenji Kira, Larry A. Rendell, A practical approach to feature selection, in:

Proceedings of the Ninth International Workshop on Machine Learning, 1992,
pp. 249–256.

14] Mark A. Hall, Correlation-based Feature Selection for Machine Learning, The
University of Waikato, 1999 (PhD thesis).

15] Isabelle Guyon, Jason Weston, Stephen Barnhill, Vladimir Vapnik, Gene
selection for cancer classification using support vector machines, Machine
Learning 46 (1–3) (2002) 389–422.

16] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion
Stoica, Spark: cluster computing with working sets, in: Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing, volume 10, page 10,
2010.

17] An infotheoretic feature selection framework for Apache Spark, http://spark-
packages.org/package/sramirez/spark-infotheoretic-feature-selection
(accessed 19.04.16).

18] Gavin Brown, Adam Pocock, Ming-Jie Zhao, Mikel. Luján, Conditional
likelihood maximisation: a unifying framework for information theoretic
feature selection, J. Mach. Learn. Res. 13 (1) (2012) 27–66.

19] John Platt, et al., Fast training of support vector machines using sequential
minimal optimization., in: Advances in Kernel Methods - Support Vector
Learning, 3, 1999.

20] Higgs dataset at the UCI Machine Learning Repository, http://www.csie.ntu.
edu.tw/cjlin/libsvmtools/datasets/ (accessed 19.04.16).
21] Soeren Sonnenburg, Vojtech Franc, Elad Yom-Tov, Michele Sebag, Pascal large
scale learning challenge, in: 25th International Conference on Machine
Learning (ICML2008) Workshop, vol. 10, 2008, pp. 1937–1953.

22] LibSVM dataset repository, http://www.csie.ntu.edu.tw/cjlin/libsvmtools/
datasets/ (accessed 19.04.16).

http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0020
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
http://mahout.apache.org/
http://mahout.apache.org/
http://mahout.apache.org/
http://mahout.apache.org/
http://mahout.apache.org/
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0080
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0095
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0105
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/

mputa

[

[
[

[

[

[

[

[

Performance Computing (HPC): parallel algorithms and
applications, programming languages and compilers for
HPC, high performance networks and architectures, etc.
He is coauthor of over 140 papers on these topics in inter-
national conferences and journals.
C. Eiras-Franco et al. / Journal of Co

23] S. Hettich, S.D. Bay, KDD Cup 1999 data. The UCI KD Archive, University of
California, Department of Information and Computer Science, Irvine, CA, 1999.

24] M. Lichman, UCI Machine Learning Repository, 2013.
25] Jonathan J. Hull, A database for handwritten text recognition research, IEEE

Trans. Pattern Anal. Mach. Intell. 16 (5) (1994) 550–554.
26] J. Stamper, A. Niculescu-Mizil, S. Ritter, G.J. Gordon, K.R. Koedinger, Bridge to

Algebra Data Set from KDD Cup 2010 Educational Data Mining Challenge,
2010.

27] Jorge Veiga, Roberto R. Expósito, Guillermo L. Taboada, Juan Touri no, MREv:
An automatic mapreduce evaluation tool for big data workloads, Procedia
Comput. Sci. 51 (2015) 80–89.

28] Usama M. Fayyad, Keki B. Irani, Multi-interval discretization of
continuous-valued attributes for classification learning, in: 13th International
Joint Conference on Artificial Intelligence, 1993, pp. 1022–1029.

29] Spark implementation of Fayyad’s discretizer based on Minimum Description
Length Principle (MDLP), http://spark-packages.org/package/sramirez/spark-
MDLP-discretization (accessed 19.04.16).

30] Subhash Saini, Johnny Chang, Haoqiang Jin, Performance evaluation of the
Intel Sandy Bridge based NASA Pleiades using scientific and engineering
applications, in: High Performance Computing Systems. Performance
Modeling, Benchmarking and Simulation, Springer, 2014, pp. 25–51.

Carlos Eiras Franco received his B.S. degree in Com-
puter Science from the Complutense University of Madrid,
Spain, in 2008. After working for several years in the pri-
vate sector developing web and mobile apps, in April 2015
he started preparing his Ph.D. thesis on the subject of “New
scalable machine learning methods: Beyond classification
and regression”.

Verónica Bolón Canedo received her B.S. (2009), M.S.
(2010) and Ph.D. (2014) degrees in Computer Science from
the University of A Coruña, Spain. Since May 2015, she is a
post-doc fellow at the University of Manchester (UK). Her
main research interests include machine learning, pattern
recognition and feature selection.

Sabela Ramos received the B.S. (2009), M.S. (2010) and
Ph.D. (2013) degrees in Computer Science from the Uni-
versity of A Coruña, Spain. From September 2015, she is a

postdoctoral researcher at ETH Zürich, Switzerland. Her
research interests are in the area of High Performance
Computing, focused on message-passing communications
and performance modelling on multi and manycore archi-
tectures.
tional Science 17 (2016) 609–619 619

Jorge González-Domínguez received the B.Sc., M.Sc. and
PhD degrees in Computer Science from the University of A
Coruña, Spain, in 2008, 2010 and 2013, respectively. He is
currently an assistant lecturer in the Computer Architec-
ture Group at the University of A Coruña, Spain. His main
research interests are in the areas of high performance
computing for bioinformatics and PGAS programming
languages.

Amparo Alonso-Betanzos M.S. (1984), and Ph.D. (1988)
degrees in Chemistry and Applied Physics, respectively, by
the University of Santiago de Compostela (Spain). After a
Postdoctoral fellowship in the Medical College of Georgia
(1988–90), she joined the Department of Computer Sci-
ence, University of A Coruña, where she is currently
a Full Professor of Artificial Intelligence. Prof. Alonso-
Betanzos has coordinated and/or participated in more
than 50 competitive projects at the European, national and
regional levels, and also on transference projects with dif-
ferent companies. She has published more than 11 book
chapters, and more than 150 articles in journals and inter-
national conferences. She is a IEEE Senior member, ACM

member and the President of the Spanish Association for Artificial Intelligence
(AEPIA). Her main interests are currently Machine learning and feature selection,
specifically in high dimensional contexts.

Juan Touriño B.S. (1993), M.S. (1993) and Ph.D. (1998)
degrees in Computer Science from the University of a
Coruña, Spain. In 1993 he joined the Department of Elec-
tronics and Systems at the University of A Coruña, where
he is currently a Full Professor of Computer Engineer-
ing. He has extensively published in the area of High

http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0115
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0120
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0120
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0120
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0120
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0120
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0120
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0120
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0125
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0130
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0135
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0140
http://spark-packages.org/package/sramirez/spark-MDLP-discretization
http://spark-packages.org/package/sramirez/spark-MDLP-discretization
http://spark-packages.org/package/sramirez/spark-MDLP-discretization
http://spark-packages.org/package/sramirez/spark-MDLP-discretization
http://spark-packages.org/package/sramirez/spark-MDLP-discretization
http://spark-packages.org/package/sramirez/spark-MDLP-discretization
http://spark-packages.org/package/sramirez/spark-MDLP-discretization
http://spark-packages.org/package/sramirez/spark-MDLP-discretization
http://spark-packages.org/package/sramirez/spark-MDLP-discretization
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150
http://refhub.elsevier.com/S1877-7503(16)30110-7/sbref0150

	Multithreaded and Spark parallelization of feature selection filters
	1 Introduction
	2 Feature selection
	2.1 Feature selection methods

	3 Parallel approaches
	3.1 Multithreaded processing
	3.2 Parallelization with Apache Spark

	4 Implemented algorithms
	4.1 RELIEF-F algorithm
	4.2 InfoGain algorithm
	4.3 CFS algorithm
	4.4 SVM-RFE algorithm

	5 Experimental results
	5.1 On the preprocessing of the datasets: parallelization of a discretization algorithm
	5.2 Analysis of the RELIEF-F implementations
	5.3 Analysis of the InfoGain implementations
	5.4 Analysis of the CFS implementations
	5.5 Analysis of the SVM-RFE implementations

	6 Conclusions
	Acknowledgements
	References

