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ABSTRACT

This manuscript summarizes the main ideas introduced in [1]. We
propose a compiler that automatically transforms a sequential ap-
plication into a parallel counterpart for multicore processors. It is
based on an intermediate representation, named KIR, which ex-
poses multiple levels of parallelism and hides the complexity of the
implementation details thanks to the domain-independent kernels
(e.g., assignment, reduction). The effectiveness and performance
of our approach, built on top of GCC, has been tested with a large
variety of codes.
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1. INTRODUCTION
Traditionally, the hardware industry has made possible improv-

ing the performance of applications without changing the sequen-
tial programming model. However, this is no longer valid in the
multicore era: a sequential program will only run on one of the
processor cores, which will not become faster. Thus, developers
have been forced to create new tools for productive parallel pro-
gramming. This parallel challenge has been addressed from dif-
ferent sides: libraries (e.g. MPI, CUDA), compiler directives (e.g.
OpenMP, OpenACC), programming languages (e.g. PGAS), and
parallelizing compilers (e.g. GCC, ICC, PLUTO [4]). Automatic
parallelization of applications is the ideal solution for making par-
allel programming easier. Nevertheless, current production com-
pilers are not able to generate parallel code even for simple sequen-
tial programs because they rely on classical dependence analysis,
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which is extremely sensitive to syntactic variations and prevents
the successful detection of parallelism in the presence of pointers
and complex control flows.

This work presents a different approach for the automatic paral-
lelization of sequential programs. It is based on the domain-inde-
pendent kernels (from now on, diKernels), which characterize the
computations carried out in a program without being affected by
how they are coded. We describe the construction of a compiler
intermediate representation (from now on, KIR) which represents
different codifications of the same program in the same manner,
and exposes multiple levels of parallelism. In addition, we present
an automatic partitioning technique that exploits the coarse-grain
parallelism exposed by the KIR targeting multicore processors.

The remainder of the manuscript is organized as follows. Sec-
tion 2 describes the diKernels used in this work. Section 3 presents
our automatic parallelization technique. Section 4 discusses related
work. Finally, Section 5 concludes the paper and presents future re-
search lines.

2. DOMAIN-INDEPENDENT KERNELS
The computational kernels have been extensively used in auto-

matic program analysis. We work with diKernels which, instead of
representing domain-specific problem solvers, describe the appli-
cation features that are relevant to the compiler. The full collection
of diKernels, including regular and irregular computations, can be
consulted in [2]. The diKernels that appear in this work are:
scalar assignment v = e, which stores the value of the expression

e in the memory address specified by the scalar variable v.
The value e is not dependent on v, that is, neither e nor any
function call within it contain occurrences of v.

scalar reduction v = v⊕e(i) with i∈N, where the reduction vari-
able v is a scalar, ⊕ is an associative and commutative oper-
ator, and e(i) is not dependent on v.

regular assignment A[i] = e(i) with i∈N taking values within the
range of array A, which stores the value of e(i) in the ith entry
of A, and e(i) is not dependent on A.

3. AUTOMATIC PARALLELIZATION

DRIVEN BY DIKERNELS
Typical IRs (e.g., Abstract Syntax Trees –ASTs–, Data Depen-

dence Graph –DDG–, Control Flow Graph –CFG–) are successful
in generating optimum code for sequential programs. However, the
detection of parallelism depends on the analysis of the whole ap-
plication and such IRs become too complex under this situation.
This section presents our approach, which builds an IR on top of
diKernels named KIR and automatically partitions the KIR to ex-
ploit coarse-grain parallelism on multicores.



1 for (i = 0; i < n; i++) {

2 t = 0;

3 for (j = 0; j < m; j++) {

4 t = t + A[i][j] * x[j];

5 }

6 y[i] = t;

7 }

Figure 1: Source code of the matrix-vector multiplication.
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Figure 2: Standard statement-based IR of Fig. 1.

3.1 KIR: A diKernel-based IR
Consider the code of the matrix-vector multiplication shown in

Fig. 1. Each iteration i of f ori computes the dot product between
the ith row of matrix A and vector x (see lines 2–5), and stores the
result in the ith position of vector y (line 6). An excerpt of a typical
IR, where ASTs represent source code statements, is depicted in
Fig. 2. ASTs are grouped into basic blocks (BB, dashed boxes) with
precedence relationships (dashed edges) to build the CFG. Each
loop (for instance, f ori) is represented by preheader (initializes the
loop index, BB0), header (checks the loop exit condition, BB5), and
latch (increments the loop index, BB4). Figure 2 also shows the
data dependences between statements (solid edges) of the DDG.

The KIR is built on three steps: first, diKernels and their rela-
tionships (Def. 1–2); second, the identification of flow dependences
(Def. 3–4); and third, the hierarchy of execution scopes (Def. 5–7).

Definition 1. A diKernel is a directed graph K = (N,E) where
E is the set of edges of a strongly connected component (SCC) of
the DDG, and N is the set of ASTs such that each AST xi ∈ N

fulfills two conditions: first, xi is an assignment statement (thus, it
is not a flow-of-control statement –e.g. branch, return, break–); and
second, there exist edges xi → x j or x j → xi in E for some x j ∈ N.
The term K<x1 . . .xn> denotes the ASTs x1 . . .xn that belong to N.

Definition 2. Let SCCx and SCCy be two strongly connected com-
ponents of the DDG associated with diKernels K<x1 . . .xn> and
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Figure 3: Steps 1 and 2 of the construction of the KIR of the
matrix-vector multiplication: diKernel-level data dependences (→)
and diKernel-level flow dependences (➡).
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Figure 4: Step 3 of the construction of the KIR of the matrix-vector
multiplication: hierarchy of execution scopes.

K<y1 . . .ym>, respectively. A diKernel-level data dependence is
an edge xi → y j of the DDG such that SCCx 6= SCCy, with xi ∈
{x1 . . .xn} and y j ∈ {y1 . . .ym}. The term Kx → Ky denotes that
DDG edge which crosses diKernel boundaries.

The diKernel-level data dependence graph (see Fig. 3) is built
from the IR of Fig. 2 as follows. Flow-of-control statements are
ignored: both the branch statements of BB3 (if(j<m)) and BB5
(if(i<n)). Two diKernels capture the computation of the f ori

index i (Fig. 1, line 1): the initialization in K<iBB0> (the term
iBB0 denotes the statement i=0 of the basic block BB0 in Fig. 2);
and the update in K<iBB4>. In the same way, K< jBB1> and
K< jBB2> represent the computations over index j. The value of
the dot product is stored in t: K<tBB1> initializes this temporary
variable at the beginning of each f ori iteration (Fig. 1, line 2);
and K<tBB2> updates its value throughout the execution of f or j

(Fig. 1, line 4). Finally, K<yBB4> captures the storage of the dot
product value in the output array y. Regarding DDG edges, the in-
coming edges of branch statements are ignored (see edges with la-
bel (1) in Fig. 2); the edges whose source and target statements be-
long to the same diKernel are subsumed in the diKernel (see edges
with label (2)); and the edges that cross diKernel boundaries are ex-
posed as diKernel-level data dependences in Fig. 3 (see non-labeled
forward and backward edges in Fig. 2).



The second step is to determine flow dependences between diKer-
nels to reflect the order in which they are executed.

Definition 3. Let xi and x j be ASTs that represent statements of
a program. We say there is a statement-level dominance relation-

ship in the following situations:

• Assume that xi and x j belong to the same basic block BB. If
xi precedes x j within BB, then xi dominates x j .

• Assume that xi and x j belong to basic blocks BBi and BB j.
If BBi dominates BB j or BBi belongs to the body of a loop
whose header BBh dominates BB j, then xi dominates x j.

Definition 4. Let Kx and Ky be diKernels connected by a diKer-
nel-level data dependence K<x1 . . .xn> → K<y1 . . .ym>. We say
there is a diKernel-level flow dependence, Kx ➡ Ky, if it holds that
statement xi dominates statement y j and DEF(x, xi) ⊇ USE(x, y j);
where xi → y j is the edge of the DDG associated with K<x1 . . .xn>

→K<y1 . . .ym>, and DEF(x, xi)/USE(x, y j) is the range of values
of x produced/used throughout the execution of statement xi/y j.

The diKernel-level flow dependences have been highlighted in
the graph of Fig. 3. K<iBB0> ➡ K<iBB4> captures the flow be-
tween the initialization of i in the preheader of f ori (BB0) and its
update in the corresponding latch (BB4). The two conditions hold
as follows: first, the statement iBB0 dominates the statement iBB4

because BB0 dominates BB4; and second, i is a scalar variable, thus
DEF(i, iBB0) = USE(i, iBB4) = {i}. Our approach handles pointers
in the diKernel recognition [2], which applies array recovery tech-
niques similar to [6]. Examples of range-based analysis of non-
scalar variables (both for arrays and pointers) can be found in [1].

The third step is to build the hierarchy of execution scopes to
expose the computational stages of the program to the compiler.

Definition 5. Assume that a program is represented by a hierar-
chy of regions. An execution scope is a loop region RL such that
there exists a perfectly nested loop L,L1, . . . ,Ln, being L the outer-
most loop.

Definition 6. The hierarchy of execution scopes is a tree whose
set of nodes are the execution scopes of the program. The root node
is a special execution scope that represents the program as a whole.
The children of a node are built as follows. Let RL be an execution
scope, L its outermost loop, and Lparent the parent loop of L. If
Lparent does not exist, then RL is set as child of the root execution
scope. Otherwise, RL is set as child of Rparent , where Rparent is the
execution scope of Lparent .

Definition 7. Let x1 . . .xn be the ASTs of a diKernel K<x1 . . .xn>.
Let L1, . . . ,Ln be the innermost loops that contain x1, . . . ,xn, respec-
tively. We say that K<x1 . . .xn> belongs to the execution scope

RL if and only if RL is the execution scope of the innermost com-
mon loop for L1, . . . ,Ln. By construction, if x1 is the index of a
loop L, and K<x1> is the diKernel that initializes this loop index,
then K<x1> belongs to RL.

The hierarchy of execution scopes of the matrix-vector multi-
plication is depicted in Fig. 4. The two loops f ori and f or j (see
Fig. 1) are not perfectly nested. Thus, the execution scope of loop
f or j (from now on, ES_ f or j) is a child of ES_ f ori, which is a child
of the root execution scope. K< jBB1> and K< jBB2> capture the
computation of loop index j and thus belong to ES_ f or j (in a simi-
lar manner, K<iBB0> and K<iBB4> belong to ES_ f ori). Note that
these diKernels and their incoming/outgoing diKernel-level depen-
dences (e.g. K< jBB1> ➡ K< jBB2>) are not shown in the KIR of
Fig. 4: computations on loop indices are already taken into account
in the execution scope notation and diKernel types. The remaining
diKernels consist of a unique assignment statement, thus they be-
long to the execution scope of the innermost loop that contains each

statement. Hence, K<tBB1>, K<tBB2> and K<yBB4> belong to
ES_ f ori, ES_ f or j and ES_ f ori, respectively.

3.2 Automatic partitioning driven by the KIR
Our technique consists of two steps: first, filtering out the diKer-

nel-level dependences that do not prevent the parallelization (from
now on, spurious diKernel-level dependences), and second, the
construction of an efficient OpenMP parallelization for the whole
application exploiting coarse-grain parallelism.

The privatization of program variables is helpful in the detec-
tion of spurious diKernel-level dependences. Hence, our technique
shades connected subgraphs of the KIR that capture the compu-
tations carried out in the privatizable scalar variables of a loop L.
These shaded subgraphs do not prevent program parallelization and
are thus omitted in the discovering of parallelism.

Definition 8. A diKernel-level dependence is spurious if one of
the following conditions is fulfilled:

1. Let K<xi> and K<y j> be diKernels connected with a diKer-
nel-level flow dependence K<xi> ➡ K<y j>. If K<xi> is
shaded, then K<xi> ➡ K<y j> is spurious.

2. Let K<xi> and K<y j> be diKernels connected with a diKer-
nel-level data dependence K<xi>→K<y j>. If xi dominates
y j and DEF(x, xi) ∩ USE(x, y j) = /0, then K<xi>→K<y j>

is spurious.
3. Consider a sequence of three execution scopes, each one with

an attached diKernel K<xi>, K<x j> and K<yl>. Assume
that the diKernels are connected with the diKernel-level flow
dependences K<xi> ➡ K<x j>, K<x j> ➡ K<yl>, and
K<xi> ➡ K<yl>. If DEF(x, xi) = USE(x, x j) = DEF(x, x j)
= USE(x, yl ), then K<xi> ➡ K<yl> is spurious.

Regarding the code of Fig. 1, t is a privatizable scalar variable
because, before reaching uses at lines 4 and 6, it is necessary to
go through the definition of line 2. Therefore, a shaded subgraph
containing K<tBB1>, K<tBB2>, K<tBB1> ➡ K<tBB2> and the
execution scope ES_ f or j is detected on the KIR of Fig. 4; and the
diKernel-level dependences K<tBB1> ➡ K<yBB4> and K<tBB2>

➡ K<yBB4> are spurious (Def. 8, case 1).
The second step is the generation of OpenMP code. In order

to reduce overhead, our technique minimizes thread creation/de-
struction by finding the critical path of the KIR and executing it
within a unique parallel region. Our approach is based on the exis-
tence of parallelizing transformations for each type of diKernel:
(1) scalar reduction diKernels are supported by the reduction

OpenMP clause; (2) regular assignment and regular reduction diKer-
nels are annotated with the for OpenMP pragma; (3) irregular as-
signment and irregular reduction diKernels are transformed via an
array expansion technique [8]. Thus, the critical path of the KIR
is the longest path of diKernel-level flow dependences connecting
parallelizable diKernels.

Our technique minimizes the synchronization overhead schedul-
ing the same workload distribution for each K<xi> ➡ K<y j> if
the following conditions hold: (1) computations of K<xi> and
K<y j> can be reordered arbitrarily; and (2) given DEF(x, xi) for
K<xi> and USE(x, y j) for K<y j>, then DEF(x, xi) = USE(x, y j).
In this way, the same thread produces the value of K<xi> that is
consumed by K<y j> and no barrier is inserted.

Finally, when the parallel region is enclosed in a loop, OpenMP
parallel directives are moved to confine that loop. The critical
path is surrounded by barriers, and the remaining computations are
annotated with OpenMP single pragmas. This optimization im-
proves the performance of numerical simulations significantly.



Table 1: Speedups of EQUAKE from SPEC CPU2000.

KIR ICC

Workload\Threads 2 4 8 2 4 8

W L×1 1.10 1.20 0.96 0.86 0.83 0.77

W L×2 1.31 1.95 1.76 0.97 0.95 0.95

W L×3 1.48 2.42 2.78 0.97 0.97 0.97

This work addresses multicore processors in both HPC and em-
bedded systems. In general, the parallelism available in diKernels
will suffice to generate a few coarse-grain threads. Our technique
only requires OpenMP support in the target architecture and the
developed optimizations do not need specific information about the
underlying hardware, thus they have wide applicability.

In the matrix-vector multiplication of Fig. 4, the critical path
of the KIR consists of the regular assignment K<yBB4> attached
to ES_ f ori. Hence, f ori is annotated with the parallel for

OpenMP pragma and variables in the shaded subgraph are included
into the private OpenMP clause.

Our technique has been implemented on top of GCC version
4.4.0. Its potential using a comprehensive benchmark suite that
includes synthetic codes, routines from dense/sparse linear alge-
bra and image processing, and full-scale applications from SPEC
CPU2000 can be found in [1], along with a comparative evaluation
with GCC, ICC and PLUTO in terms of effectiveness. In general,
contenders fail to parallelize regular codes with complex control
flows, and irregular computations. For instance, Table 1 presents
the speedups with respect to the sequential version of the EQUAKE
benchmark on a system with 2 Intel Xeon E5520 quad-core proces-
sors. As can be seen, ICC is unable to parallelize this case study
properly while KIR reduces the execution time.

4. RELATED WORK
The polyhedral model [7] has reached production (GCC, IBM)

and research (PLUTO) compilers. It is a mathematical framework
for loop nest parallelization limited to static-control, regular loop
nests. A recent extension [3] partially removes these limitations
and models irregular data accesses conservatively (e.g., an array
with a complex subscript is considered as a single variable).

Sato and Iwasaki [12] transform a loop body into a matrix-mul-
tiplication form based on reduce and scan parallel primitives. In
addition, they extract max-operators from if statements, enabling
the parallelization of loops with complex control flows.

Liu et al. [10] target iteration-level parallelism as a graph opti-
mization problem: nodes are the statements of a loop, weighted
edges represent dependence relationships.

Decoupled Software Pipelining (DSWP) [11] divides a loop into
critical and off-critical path threads that run concurrently but com-
municate in a pipelined manner. Huang et al. [9] introduced DSWP+
which, instead of balancing the computational load, subsequently
parallelizes the paths with other techniques (e.g. forall, localwrite).

The Paralax Infrastructure [13] uses full-data structure SSA and
use/def chains to compute the SCCs on the Program Dependence
Graph of a loop and extract pipeline parallelism. A lightweight
programming model, which is based on annotations inserted by the
programmer, helps the compiler to find thread-level parallelism.

Canedo et al. [5] present a fully automatic parallelization ap-
proach of whole Simulink applications.

Overall, most of the techniques are partial approaches, are not
implemented on a compiler, or they model simple loops individu-
ally. In contrast, we model general-purpose sequential applications
as a whole. In this way, KIR generates a comprehensive strategy

that minimizes the parallel overhead. In addition, regular and irreg-
ular computations are jointly handled.

5. CONCLUSIONS AND FUTURE WORK
This work has presented a compiler devoted to parallelize the

input sequential application automatically. It handles syntactical
variations in the source code and regular and irregular computations
jointly thanks to diKernels.

The first contribution is the KIR. This compiler intermediate rep-
resentation consists of a set of diKernels, diKernel-level depen-
dences which connect them, and execution scopes which represent
the stages of the original program.

The second contribution is an automatic partitioning technique
driven by the KIR. It exploits coarse-grain parallelism on multicore
processors with a global OpenMP parallelization strategy for the
whole application.

As future work, we will include locality exploitation techniques
to improve the performance of the generated OpenMP code. In
addition, our compiler will target fine-grain parallelism and support
manycore architectures such as GPUs.
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