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José M. Andión · Manuel Arenaz ·
François Bodin · Gabriel Rodŕıguez ·
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Abstract The use of GPUs for general purpose computation has increased
dramatically in the past years due to the rising demands of computing power
and their tremendous computing capacity at low cost. Hence, new program-
ming models have been developed to integrate these accelerators with high-
level programming languages, giving place to heterogeneous computing sys-
tems. Unfortunately, this heterogeneity is also exposed to the programmer
complicating its exploitation. This paper presents a new technique to automat-
ically rewrite sequential programs into a parallel counterpart targeting GPU-
based heterogeneous systems. The original source code is analyzed through
domain-independent computational kernels, which hide the complexity of the
implementation details by presenting a non-statement-based, high-level, hi-
erarchical representation of the application. Next, a locality-aware technique
based on standard compiler transformations is applied to the original code
through OpenHMPP directives. Two representative case studies from scien-
tific applications have been selected: the three-dimensional discrete convolu-
tion and the simple-precision general matrix multiplication. The effectiveness
of our technique is corroborated by a performance evaluation on NVIDIA
GPUs.
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1 Introduction

The use of GPUs for general purpose computation (GPGPU) has increased
dramatically in the past years [29] due to mainly two reasons. On the one
hand, the hardware industry has not been able to satisfy the rising demands
of computing power while preserving the sequential programming model. Com-
puter users expect their applications to run faster with each new generation
of microprocessors, but this is not the case in the multicore era. A sequen-
tial program will only run on one of the cores, which will not become faster.
Thus, the software community has have been forced to develop and use parallel
programming tools. On the other hand, GPUs offer a tremendous computing
capacity at low cost due to the economic pressure of the video game industry.
The transition from fixed-function to programmable shaders has made these
computational resources available to general purpose programming [20]. First
approaches (OpenGL [31], Cg [23]) forced programs to look like graphics ap-
plications that drew triangles and polygons, limiting the accessibility of GPUs.
Therefore, new programming models have been developed to integrate these
accelerators (GPUs, but also other manycore devices like the Intel Xeon Phi)
with high-level programming languages, giving place to heterogeneous com-
puting systems.

The main drawback of these systems is that heterogeneity is exposed to
the developer. Programming is hard, and parallel architectures make it harder
because they require additional tasks to parallelize and tune for optimum per-
formance. With most tools for GPU programming, developers have to deal
with many low-level characteristics and limitations. Writing a GPU applica-
tion by hand consumes a huge quantity of time, even to experienced pro-
grammers, and it is an error-prone activity. Exploiting locality is key to get
good performance in GPUs. Moreover, the improvement of a code transforma-
tion is often unpredictable even for GPU experts. Nowadays, several directive-
based approaches have appeared to program GPU-based heterogeneous sys-
tems (OpenMP 4.0 [28], OpenACC [32], OpenHMPP [27], OpenMPC [21]). All
of them try to reduce the programming effort, allow portability and under-
standability, and obtain good performance. Thus, we believe that a directive-
based approach is a suitable choice for the automatic parallelization of sequen-
tial applications on GPUs.

The main contribution of this paper is three-fold:

1. A new technique to automatically rewrite sequential programs into a paral-
lel counterpart targeting GPU-based heterogeneous systems. This locality-
aware technique exploits the GPU hardware architecture through OpenHMPP
directives.

2. The successful application of this technique to two representative case
studies extracted from compute-intensive scientific applications: the three-
dimensional discrete convolution (CONV3D), and the simple-precision gen-
eral matrix multiplication (SGEMM).

3. The performance evaluation of our technique corroborating its effective-
ness.
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The remainder of the paper is organized as follows. Section 2 briefly intro-
duces GPGPU, describes the CUDA programming model and highlights the
GPU hardware features that impact on performance. Section 3 reviews the
OpenHMPP standard and the additional functionality supported by CAPS
Compilers [11] that is relevant for this work. Section 4 introduces the new
locality-aware optimization technique for GPUs. Section 5 details the opera-
tion of our approach with the CONV3D and SGEMM case studies. Section 6
presents the performance evaluation. Section 7 discusses related work and,
finally, Sect. 8 concludes the paper and presents future work.

2 GPGPU with the CUDA Programming Model

GPUs were designed to show images on displays. Certain stages of the graphics
pipeline perform floating-point operations on independent data, such as trans-
forming the positions of triangle vertices or generating pixel colors. Therefore,
GPUs execute thousands of concurrent threads in an SIMD fashion requiring
high-bandwidth memory access. This design goal is achieved because GPUs
devote more transistors than CPUs to data processing instead of data caching
and control flow.

In this paper, we have used NVIDIA GPUs. This company introduced
CUDA [26] enabling the use of C as GPU programming language. The pro-
grammer defines C functions, called CUDA kernels, that specify the operation
of a single GPU thread. Three ideas are behind CUDA. First, lightweight par-
allel threads are organized into a hierarchy: a grid of blocks, a block of threads.
Blocks may execute in parallel allowing easy scalability. Second, CUDA defines
a shared memory between the
threads of a block to enable fast data interchange. And third, the execution of
the threads of a block can be synchronized with a barrier. In addition, CUDA
provides a complex memory hierarchy that has to be explicitly managed by
the programmer.

The hardware implementation of CUDA consists of an array of Stream-
ing Multiprocessors (SMs), where each SM executes the threads of a block in
groups of 32 called warps. The threads of a warp execute one common instruc-
tion at a time. The compute capability of an NVIDIA GPU defines its core
architecture (Tesla, Fermi, Kepler), supported features (e.g., double-precision
floating-point operations), technical specifications (e.g., the maximum dimen-
sions of the hierarchy of threads) and architectural specifications (e.g., the
number of warp schedulers).

In summary, CUDA exposes the GPU hardware architecture through pro-
gramming features that the GPGPU developer must handle to generate effi-
cient code:

1. Threadification, i.e., the policy that guides the creation of GPU threads
and what code they will execute. Each thread has a unique identifier that
is commonly used to access data stored in the GPU memories, in a similar
way to loop indices.
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2. Thread grouping, so that threads are dispatched in warps to SMs.

The CUDA C Best Practices Guide [25] also prioritizes some strategies to
improve the performance of the GPU code:

3. Minimization of CPU-GPU data transfers.
4. Coalesced accesses to global memory, i.e., several memory accesses from

different threads are handled by a unique transaction to the global memory.
5. Maximize the usage of registers and shared memory to avoid redundant

accesses to global memory (the biggest but slowest one).
6. Avoid thread divergence, i.e., threads within the same warp following dif-

ferent execution paths.
7. Maintain sufficient occupancy, i.e., sufficient number of active threads per

SM.
8. The number of threads per block must be a multiple of 32.

The most relevant programming features in points (1)–(8) have been con-
sidered in the design of our locality-aware technique to tune the performance
of the automatically generated GPU parallel code. The next section describes
the support provided by OpenHMPP for those programming features.

3 OpenHMPP Directives and CAPS Compilers

CAPS Entreprise offers a complete suite of software tools to develop high
performance parallel applications targeting heterogeneous systems based on
manycore
accelerators. The most relevant ones are CAPS Compilers [11], which generate
CUDA [26] and OpenCL [30] code from a sequential application annotated
with compiler directives. Directive-based approaches (as the well-known
OpenMP [28]) provide more readable codes and ease the interaction between
application-domain experts and programmers. The sequential and the parallel
versions coexist in the same file, offering an incremental way to migrate appli-
cations and to reduce maintenance costs. The developed codes are independent
from the hardware platform and new hardware accelerators supported by the
translator are automatically exploited. In addition, reasonable performance is
achieved compared to hand-written GPU codes [22]. Thus, we consider that
compiler directives offer a convenient instrument for the automatic paralleliza-
tion on GPU-based heterogeneous systems.

Among the numerous proposals of compiler directives to exploit these sys-
tems, three standardization efforts have emerged throughout the last years:
OpenHMPP [27], OpenACC [32] and, finally, OpenMP 4.0 [28]. All of them
follow a similar approach regarding the interaction between the host and the
accelerator: a Remote Procedure Call (RPC) paradigm that offloads a region
of code from the CPU to be executed on the GPU. They present a memory
model in which the address spaces of the host and the accelerator are consid-
ered to be disjoint, but data transfers are automatically inserted when needed.
The programmer is also allowed to explicitly manage these transfers in order to
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improve the performance (for instance, overlapping them with asynchronous
calls or specifying the portions of the arrays to be copied).

Nevertheless, there exist some differences between the functionality of-
fered by the standards. GPUs commonly have software-managed caches (e.g.,
the shared memory in the CUDA programming model) whose exploitation
is key to get a good performance. Only OpenACC and OpenHMPP provide
a mechanism to explicitly handle this memory, while OpenMP relies on the
implementer. Another significant difference exists when specifying parallelism.
OpenHMPP exposes a set of threads and each thread executes a loop iteration.
OpenACC presents three levels of parallelism: the programmer can launch a
set of gangs executing in parallel, where each gang may support multiple work-
ers, each with vector or SIMD operations. OpenMP presents a set of threads
that are organized in teams and can run loop iterations or explicit tasks. This
standard can exploit SIMD operations too.

In this work, we have selected OpenHMPP (formerly known as HMPP [8])
and the extension HMPP Codelet Generator (HMPPCG) [10] because these
directives provide unique functionality to transform loop nests to tune the
generated GPU code, and both the compiler and the runtime are much more
mature. However, these loop transformations can be performed without direc-
tives and we will be able to use OpenACC when a complete implementation
is developed. Regarding the recently approved OpenMP 4.0, the explicit man-
agement of the complete memory hierarchy by the programmer has not been
considered, but our work can help to exploit locality in the implementations
of the standard.

OpenHMPP supports the programming features mentioned in points (1)–
(8) of Sect. 2 in the following way:

1. The gridify directive performs threadification on loops and thread group-
ing as follows. For simple loops, it generates consecutive GPU threads for
consecutive loop iterations, one thread per iteration. For loop nests, it im-
plements a 2D threadification process with the two outermost loops in the
nest; consecutive GPU threads are created for consecutive iterations of the
second loop.

2. The advancedload and delegatedstore directives, with the asynchronous
clause, allow the overlapping between CPU-GPU data transfers and com-
putations. In addition, it is possible to transfer only portions of arrays.

3. The permute, unroll, fuse, tile. . . directives perform standard compiler
transformations on loops. These directives are used to fine tune the per-
formance of the generated GPU code.

4. The gridify directive also enables the allocation of program variables on
the different GPU memories: for instance, the shared clause for the shared
memory.

This section has summarized the mechanisms provided by CAPS Compilers
to generate efficient GPU code through compiler directives. In the next section,
we describe how this functionality is exploited by our locality-aware automatic
parallelization technique.
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4 Locality-Aware Automatic Parallelization with the
diKernel-based Intermediate Representation (KIR)

Despite great advances in compiler technology, the automatic parallelization of
applications continues to be an open challenge. Current compilers usually fail
to parallelize even simple sequential programs because two complex problems
have to be addressed: first, the detection of parallelism to determine what
parts in the original source code can be executed concurrently; and second,
the generation of efficient parallel code taking into account the underlying
hardware architecture.

This section is organized as follows. Section 4.1 briefly describes the KIR [1],
a compiler Intermediate Representation (IR) that enables the detection of
multiple levels of parallelism. After that, Sect. 4.2 presents a new KIR-based
locality-aware technique for the automatic generation of efficient GPGPU
code.

4.1 The KIR: an IR for the Detection of Parallelism

Current compilers typically address the automatic detection of parallelism by
running classical dependence analyses on standard statement-based IRs (e.g.,
Abstract Syntax Trees —ASTs—, Data Dependence Graph —DDG—, Con-
trol Flow Graph —CFG—, Dominator Tree —DT—). Such IRs are well suited
for code generation, but not for the detection of parallelism. Previous work
presented the KIR [1], a new compiler IR that eases the automatic detection of
parallelism in sequential codes. It hides the complexity of the implementation
details and presents a non-statement-based, high-level, hierarchical represen-
tation of the application.

The KIR is based on the concept of domain-independent computational
kernel (from now on, diKernel). It consists of a set of diKernels and depen-
dence relationships between them representing DDG edges that cross diKernel
boundaries. In order to capture the order in which diKernels are executed, flow
dependences between diKernels are identified using CFG, DDG and DT. Fi-
nally, the KIR also comprises a hierarchy of execution scopes (based on the
hierarchy of loops) that reflects the computational stages of the sequential
program and groups diKernels into these stages.

Multiple definitions of the term computational kernel have been proposed
in the literature in the context of automatic program analysis. The diKernels
do not represent domain-specific problem solvers. Instead, they characterize
the computations carried out in a program from the point of view of the
automatic detection of parallelism. A detailed description of the collection of
diKernels can be consulted in [5]. The diKernels that appear in this paper are:

– scalar assignment v = e, which stores the value of the expression e in
the memory address specified by the scalar variable v. The value e is not
dependent on v, that is, neither e nor any function call within it contain
occurrences of v.
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1 int i, j, k, size_x , size_y , size_z;
2 float coefx ,coefy ,coefz ,*input ,* output;
3
4 for (i = 0; i < size_x; i++) {
5 for (j = 0; j < size_y; j++) {
6 for (k = 0; k < size_z; k++) {
7 float tempx = input[i][j][k]+coefx*
8 (
9 input[i-1][j][k]+ input[i+1][j][k]+

10 input[i-2][j][k]+ input[i+2][j][k]+
11 input[i-3][j][k]+ input[i+3][j][k]+
12 input[i-4][j][k]+ input[i+4][j][k]
13 );
14 float tempy = input[i][j][k]+coefy*
15 (
16 input[i][j-1][k]+ input[i][j+1][k]+
17 input[i][j-2][k]+ input[i][j+2][k]+
18 input[i][j-3][k]+ input[i][j+3][k]+
19 input[i][j-4][k]+ input[i][j+4][k]
20 );
21 float tempz = input[i][j][k]+coefz*
22 (
23 input[i][j][k-1]+ input[i][j][k+1]+
24 input[i][j][k-2]+ input[i][j][k+2]+
25 input[i][j][k-3]+ input[i][j][k+3]+
26 input[i][j][k-4]+ input[i][j][k+4]
27 );
28 output[i][j][k] =
29 output[i][j][k]+tempx+tempy+tempz;
30 }
31 }
32 }

(a) Source code.

ROOT EXECUTION SCOPE

ES_fori,j,k (Fig. 1a, lines 4-32)

K < tempz21 >
scalar assignment

K < output28 >
regular reduction

K < tempy14 >
scalar assignment

K < tempx7 >
scalar assignment

(b) KIR.

Fig. 1: The 3D discrete convolution operator (CONV3D).

– scalar reduction v = v ⊕ e(i) where the reduction variable v is a scalar,
⊕ is an associative and commutative operator, i is an affine expression of
the enclosing loop indices, and e(i) is an expression that can depend on i
but not on v.

– regular reduction A[i] = A[i] ⊕ e(i) where A[i] represents an entry of
the array A, i is an affine expression of the enclosing loop indices, ⊕ is an
associative and commutative operator, and e(i) is not dependent on A.

For illustrative purposes, consider the source code of the 3D convolution
operator shown in Fig. 1a. Figure 1b shows the corresponding KIR. The loops
are perfectly nested, thus they are represented by a unique execution scope
ES fori,j,k. One diKernel is created for each temporary variable that stores the
calculations in each 3D axis: K<tempx7>, K<tempy14> and K<tempz21>.
Note that the subindices refer to the line number in the source code (e.g., the
term tempx7 refers to the statement in lines 7–13 of Fig. 1a). Their contri-
bution to the final result K<output28> is symbolized by diKernel-level flow
dependences (á). Scalars tempx, tempy and tempz are assigned new values in
each fori,j,k iteration, thus K<tempx7>, K<tempy14> and K<tempz21> are
scalar assignments. In contrast, the value stored in output [i][j][k] depends on
the previous one and thus K<output28> is a regular reduction.
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4.2 A Locality-Aware Technique for the Generation of Efficient GPGPU
Code

The generation of parallel code is a complex problem that has to be addressed
by a parallelizing compiler. Previous work [1] presented an OpenMP-based
hardware independent approach targeting multicore processors that consists
of two steps:

1. Filtering out the spurious diKernel-level dependences, which are those that
do not prevent the parallelization of the sequential application. The sub-
graphs of the KIR that represent the computations carried out on priva-
tizable scalar variables [13] are shaded to be omitted in the discovery of
parallelism. Regarding the example of Fig. 1, scalars tempx, tempy and
tempz are loop temporaries as they are recomputed at the beginning of
each fori,j,k iteration. Thus, they are privatizable and the corresponding
parts of the KIR are shaded (see the shaded region in Fig. 1b).

2. The construction of an efficient parallelization strategy based on the appli-
cation features captured by the KIR. The parallel code generation is based
on the existence of parallelizing transformations for each type of diKer-
nel. For instance, a scalar reduction can be parallelized in three phases
with privatization support [34]. A regular reduction represents conflict-free
loop iterations that can be transformed into forall parallel loops. Other
examples are discussed in [4].

This OpenMP-based hardware independent approach has demonstrated to
be effective for multicore processors [1]. However, for peak performance on the
GPU, the generated code must exploit its characteristic hardware architec-
ture (in particular, the complex memory hierarchy). Hereafter, we introduce
a new locality-aware code generation technique that extends the previous ap-
proach considering the most impacting programming features enumerated in
points (1)–(8) of Sect. 2: loop threadification (1), thread grouping (2), co-
alesced access to global memory (4), and maximum usage of registers and
shared memory (5). The minimization of CPU-GPU data transfers (3) will be
addressed with a new automatic partitioning algorithm of the KIR, which will
decide what parts of full-scale applications must be executed on the CPU or
on the GPU and analyze their interactions. Therefore, we assume that pro-
gram data fits into GPU memory and, in our experiments (see Sect. 6), we
have measured the execution times excluding CPU-GPU data transfers. This
paper does not address the avoidance of thread divergence (6) as it is a prob-
lem more related to the algorithm implemented by the given source code. In
addition, maintaining sufficient occupancy (7) or determining the best block
size (8) are programming features very related to the concrete GPU hardware
that executes the code and their optimization needs runtime information, thus
they are out of the scope of this paper.

The first extension is an algorithm to detect coalesced accesses to the
GPU global memory. According to the CUDA Best Practices Guide [25],
coalescing is maximized (and thus memory requests are minimized) if the
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Algorithm 1 Detection of coalesced accesses to GPU global memory

1: function isCoalescedAccess
Input: access xk[ik,1][ik,2] . . . [ik,n] to an n-dimensional array x stored in row-major order
Input: loop nest L = L1, L2, . . . , Ll where L1 is the threadified loop
2: CHRECS xk ← [{φk,1,+, gk,1}][{φk,2,+, gk,2}] . . . [{φk,n,+, gk,n}]
3: for each warp W do
4: for each thread Ti in W do
5: CHRECS xTi

k ← [{φTi
k,1,+, g

Ti
k,1}][{φ

Ti
k,2,+, g

Ti
k,2}] . . . [{φ

Ti
k,n,+, g

Ti
k,n}]

6: end for
7: for p ∈ {1, . . . , n− 1} do
8: if ∃ {φTi

k,p,+, g
Ti
k,p} 6= {φ

Tj
k,p,+, g

Tj
k,p},Ti,Tj ∈W then

9: return false
10: end if
11: end for
12: if ∃ {φTi

k,n,+, g
Ti
k,n} 6= {φ

Tj
k,n,+, g

Tj
k,n},Ti,Tj ∈W then

13: CHRECS RANGE xk,n ←
⋃Ti{φTi

k,n,+, g
Ti
k,n}

14: if CHRECS RANGE xk,n defines a contiguous range then
15: return true
16: else
17: return false
18: end if
19: else
20: return true
21: end if
22: end for
23: end function

1 // only for_i is threadified
2 for (i = 0; i <= N; i++) {
3 for (j = 0; j <= N; j++) {
4 ... x[i][j] ...
5 }
6 }

(a) Source code S1.

T0 T1 T2
(i=0) (i=1) (i=2)

j=0 x[0][0] x[1][0] x[2][0]
j=1 x[0][1] x[1][1] x[2][1]
j=2 x[0][2] x[1][2] x[2][2]
. . . . . . . . . . . .

c
h
re
c
s 1stdim {0} {1} {2}

2nddim {0,+, 1} {0,+, 1} {0,+, 1}

(b) Non-coalesced accesses.

1 // only for_j is threadified
2 for (j = 0; j <= N; j++) {
3 for (i = 0; i <= N; i++) {
4 ... x[i][j] ...
5 }
6 }

(c) Source code S2.

T0 T1 T2
(j=0) (j=1) (j=2)

i=0 x[0][0] x[0][1] x[0][2]
i=1 x[1][0] x[1][1] x[1][2]
i=2 x[2][0] x[2][1] x[2][2]
. . . . . . . . . . . .

c
h
re
c
s 1stdim {0,+, 1} {0,+, 1} {0,+, 1}

2nddim {0} {1} {2}

(d) Coalesced accesses.

Fig. 2: Examples of access patterns to the GPU global memory.

threads of a warp access consecutive memory locations. Algorithm 1 identifies
coalesced accesses by taking into account loop threadification, thread grouping
and chains of recurrences (from now on, chrecs). The chrecs are an algebraic
formalism that can describe the access patterns to n-dimensional arrays, repre-
senting them by a tuple {φ,+, g} where φ is the initial position, + the addition
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operator, and g the stride. For an access to an array x in a loop nest L, the KIR
provides the chrecs associated to each array dimension [2] (see line 2 of Alg. 1).
Next, chrecs are instantiated to represent the memory accesses performed by
each GPU thread by fixing the value of the index of L1 that the thread exe-
cutes (line 5). Assuming row-major storage, consecutive memory positions are
given by consecutive accesses to the last dimension of the array x. Thus, the
first n − 1 chrecs must be the same (lines 7–11). Finally, if the union of the
chrecs of the last dimension defines a contiguous range, then the accesses are
coalesced (line 15). If the chrecs of the last dimension are the same, then the
same memory position is accessed and only one memory transaction is needed
(line 20).

For illustrative purposes, Fig. 2a and 2c present the two possibilities to
traverse a 2D array x: row-major traversal (denoted S1) and column-major
traversal (S2). Arrays are stored in row-major order in C and thus S1 accesses
array x row by row, exploiting locality and minimizing data cache misses on
the CPU. Assume that only the outer loop of a nest is threadified on the
GPU (contrary to the OpenHMPP default policy —see Sect. 3—). Hence,
each GPU thread will access consecutive memory positions: T0 will access
x[0][0], x[0][1], x[0][2]. . . (see Fig. 2b). Therefore, for the iteration j = 0, the
threads of the first warp (T0, T1, T2 . . . ) will access to the non-consecutive
memory locations x[0][0], x[1][0], x[2][0]. . . and these memory requests can-
not be coalesced. Algorithm 1 detects this non-coalesced access pattern as
follows. The KIR provides CHRECS xk = [{0,+, 1}][{0,+, 1}] (see line 2
of Alg. 1). Next, chrecs are instantiated: CHRECS xT0

k = [{0}][{0,+, 1}],
CHRECS xT1

k = [{1}][{0,+, 1}]. . . . They are different for the first dimension,
thus the threads cannot access consecutive memory positions (lines 7–11).

In contrast, j drives the access to the last dimension of array x in S2
(see Fig. 2c). This code will run poorly on the CPU in the common situation
when the array x is bigger than the cache memory. However, on the GPU,
T0 will access to x[0][0], x[1][0], x[2][0]. . . (see Fig. 2d). Hence, for the iter-
ation i = 0, the threads of the first warp (T0, T1, T2 . . . ) will access the
consecutive memory locations x[0][0], x[0][1], x[0][2]. . . and these memory re-
quests can be coalesced. Algorithm 1 detects this coalesced access pattern as
follows. The KIR provides CHRECS xk = [{0,+, 1}][{0,+, 1}] (see line 2
of Alg. 1). Next, chrecs are instantiated: CHRECS xT0

k = [{0,+, 1}][{0}],
CHRECS xT1

k = [{0,+, 1}][{1}]. . . . They are the same for the first dimen-
sion, thus the threads may access consecutive memory positions (lines 7–11).
The union of the last chrecs {0} ∪ {1}. . . defines a contiguous range (line 15)
and therefore the performed accesses maximize coalescing and correctly ex-
ploit the GPU global memory locality. As can be observed, if the index of the
threadified loop does not drive the access to the last dimension of x, a general
strategy to try to exploit coalescing is to permute the loops.

The second extension is a set of algorithms to maximize the usage of
registers and shared memory. As mentioned in Sect. 2, the GPU global
memory is the biggest but slowest one. Both registers and shared memory
are faster, but they have much less capacity. Therefore, this complex memory
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Algorithm 2 Usage of registers to store reused data within a GPU thread

1: procedure StoreReusedDataInRegisters
Input: n-dimensional array x[s1][s2] . . . [sn]
Input: loop nest L = L1, L2, . . . , Ll where L1 is the threadified loop
2: collect accesses xk[ik,1][ik,2] . . . [ik,n] with k ∈ {1, . . . ,m}
3: CHRECS xk ← [{φk,1,+, gk,1}][{φk,2,+, gk,2}] . . . [{φk,n,+, gk,n}]
4: for each thread Ti do
5: CHRECS xTi

k ← [{φTi
k,1,+, g

Ti
k,1}][{φ

Ti
k,2,+, g

Ti
k,2}] . . . [{φ

Ti
k,n,+, g

Ti
k,n}]

6: if
⋂m

k=1 CHRECS xTi
k 6= ∅ then

7: store reused data between the accesses made by Ti in registers if data are
private

8: end if
9: end for

10: end procedure

Algorithm 3 Usage of the GPU shared memory for data shared between the
threads of a warp

1: procedure StoreSharedDataInSharedMemory
Input: n-dimensional array x[s1][s2] . . . [sn]
Input: loop nest L = L1, L2, . . . , Ll where L1 is the threadified loop
2: collect accesses xk[ik,1][ik,2] . . . [ik,n] with k ∈ {1, . . . ,m}
3: CHRECS xk ← [{φk,1,+, gk,1}][{φk,2,+, gk,2}] . . . [{φk,n,+, gk,n}]
4: for each block B do
5: for each thread Ti of B do
6: CHRECS xTi

k ← [{φTi
k,1,+, g

Ti
k,1}][{φ

Ti
k,2,+, g

Ti
k,2}] . . . [{φ

Ti
k,n,+, g

Ti
k,n}]

7: end for
8: SHDATA x←

⋂Ti CHRECS xTi
k with k ∈ {1, . . . ,m}

9: if (SHDATA x 6= ∅) then
10: store data shared between the threads of block B in the shared memory
11: end if
12: end for
13: end procedure

Algorithm 4 Increase the computational load of a GPU thread

1: procedure IncreaseLoad
Input: access xk[ik,1][ik,2] . . . [ik,n] to an n-dimensional array x stored in row-major order
Input: loop nest L = L1, L2, . . . , Ll where both L1, L2 are threadified
Input: amount of data ∆ to be processed by a GPU thread
2: increment the step of the outer loop L1 to ∆
3: for each scalar variable s in L do
4: promote s to an array s[∆]
5: transform reads and writes to s into loops of ∆ iterations
6: end for
7: end procedure

hierarchy should be managed with even more care than the traditional CPU
memory hierarchy for getting good performance.

Algorithm 2 presents a technique to detect reused data within a GPU
thread. First, it collects all the accesses to an n-dimensional array x in a loop
nest L (see line 2 of Alg. 2). Next, the KIR provides the chrecs associated to
each access in each array dimension (line 3). For each thread, the chrecs are
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instantiated by fixing the value of the index of L1 that the thread executes
(line 5). If the intersection of the instantiated chrecs for the thread is not
empty, then some data are accessed several times and they can be stored in
the GPU registers if they are not modified by another thread (lines 6–8). The
shared memory can be used for the same purpose.

However, the GPU shared memory has been specifically designed to share
data between the threads of a block. Algorithm 3 presents a technique that
takes into account all the accesses to an n-dimensional array x in a loop nest
L (see line 2 of Alg. 3). The KIR provides the chrecs associated to each access
in each array dimension (line 3). For each thread, the chrecs are instantiated
by fixing the value of the index of L1 that the thread executes (line 6). If
the intersection of the instantiated chrecs associated to all the accesses is not
empty, then some data are accessed several times and can be stored in the
shared memory (lines 8–11).

Another general technique to improve performance is loop tiling. It consists
of partitioning the loop iterations into blocks to ensure data being used stay in
the lower levels of the memory hierarchy. As explained in Sect. 3, OpenHMPP
implements loop threadification and thread grouping with the two outermost
loops in a nest; consecutive GPU threads are created for consecutive iterations
of the second loop. Therefore, the common m × n tiling breaks coalescing
because the L2 step is different from one and consecutive threads will not
access consecutive memory locations. Algorithm 4 presents a technique for
loop tiling that preserves coalescing under OpenHMPP and also considers
the promotion of the enclosed scalar variables. Instead of creating a thread
for each access xk, a bigger portion of data to compute (∆) is given to each
thread. Hence, the algorithm increments the step of L1 to i = i+∆ (see line 2
of Alg. 4). Scalar variables inside L are promoted to arrays of size ∆, and
their corresponding reads and writes are transformed into loops preserving
dependences (lines 3–6). In addition, this technique can be completed with
loop unrolling and loop interchange. Typically, GPU compilers make better
optimizations if the program is coded with several instructions using scalar
variables (avoiding arrays and loops). In this way, the GPU compiler is able
to store them in registers.

In sum, this section has introduced a new KIR-based technique which auto-
matically transforms a sequential program into a parallel counterpart targeting
GPU-based heterogeneous systems. This new technique exploits the charac-
teristic hardware architecture of the GPU (in particular, the complex memory
hierarchy). It detects coalesced accesses to the global memory, and maximizes
the usage of registers and shared memory, as will be illustrated in the next
section with two case studies.

5 Case Studies

This section details the operation of the locality-aware automatic paralleliza-
tion technique introduced in Sect. 4. We have selected two representative
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Table 1: GPU features exploited with each variant of CONV3D and SGEMM.

case studies extracted from compute-intensive scientific applications. First,
Sect. 5.1 presents the study of the three-dimensional discrete convolution
(CONV3D). With this case study we cover stencil codes, which are commonly
found in computer simulations, image processing and finite element methods.
Next, Sect. 5.2 addresses the simple-precision general matrix multiplication
(SGEMM), which is one of the most important linear algebra routines com-
monly used in engineering, physics or economics.

5.1 Case Study: CONV3D

The three-dimensional discrete convolution operator can be generally written
as:

output[i][j][k] =
∑

n1,n2,n3

coef [i][j][k] · input[i− n1][j − n2][k − n3] (1)

with input being the input 3D-function data, coef the filter, and output the
convoluted data. Consider the implementation shown in Fig. 1a (from now on,
denoted as variant conv3d-cpu). Three nested loops fori, forj and fork traverse
output (see lines 4–6). For each element output [i][j][k], four elements in each
sense of the three directions of the coordinate axis are taken to perform the
convolution with the scalar values coefx, coefy and coefz, respectively. Thus,
the temporary variable tempx (see lines 7–13) stores the weighted sum of nine
values of input along the x-axis, coefx being the weight. Similarly, temporaries
tempy and tempz are along the y-axis and z-axis. Finally, these contributions
are accumulated in the array element output [i][j][k] (see lines 28–29).

The corresponding KIR, depicted in Fig. 1b, was described in Sect. 4.1.
Only the regular reduction K<output28> determines if CONV3D is paral-
lelizable; note that the remaining parts of the KIR are shaded because they
represent privatizable temporaries. As the regular reduction diKernel repre-
sents conflict-free loop iterations, it can be converted into a forall parallel
loop. On the CPU, it can be parallelized using the OpenMP parallel for

directive.
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T0 T1

1stdim 2nddim 3rddim 1stdim 2nddim 3rddim

CHRECS input19 {0,+, 1} {0} {0} {0,+, 1} {0} {1}
CHRECS input20 {0,+, 1} {0} {−1} {0,+, 1} {0} {0}
CHRECS input21 {0,+, 1} {0} {1} {0,+, 1} {0} {2}
CHRECS input22 {0,+, 1} {0} {−2} {0,+, 1} {0} {−1}
CHRECS input23 {0,+, 1} {0} {2} {0,+, 1} {0} {3}
CHRECS input24 {0,+, 1} {0} {−3} {0,+, 1} {0} {−2}
CHRECS input25 {0,+, 1} {0} {3} {0,+, 1} {0} {4}
CHRECS input26 {0,+, 1} {0} {−4} {0,+, 1} {0} {−3}
CHRECS input27 {0,+, 1} {0} {4} {0,+, 1} {0} {5}

Table 2: Chrecs for the accesses in lines 21–27 of Fig. 1a (CONV3D).

Table 1 summarizes the GPU features addressed by our locality-aware
automatic parallelization technique to generate an optimal variant written
by an expert in GPU programming. The first optimized variant is conv3d-
hmpp1, which exploits coalescing through loop interchange as follows. A basic
OpenHMPP variant could be generated by simply isolating the source code
between lines 6–30 of Fig. 1a. However, Alg. 1 detects that this is not the cor-
rect approach due to the non-coalesced accesses. The chrecs associated to the
first access to array input (line 7) are CHREC input1 = [{0,+, 1}][{0,+, 1}]
[{0,+, 1}]. As explained in Sect. 3, the default OpenHMPP loop threadification
policy creates GPU threads for the two outermost loops (fori and forj). Hence,

the instantiated chrecs would be CHREC inputT0
1 = [{0}][{0}][{0,+, 1}],

CHREC inputT1
1 = [{0}][{1}][{0,+, 1}]. . . and these accesses cannot be co-

alesced (see lines 7–11 of Alg. 1). However, if the loop nest is permuted to
forj , fork, fori, the chrecs will be CHREC inputT0

1 = [{0,+, 1}][{0}][{0}],
CHREC inputT1

1 = [{0,+, 1}][{0}][{1}]. . . , satisfying the conditions of
lines 14–15 of Alg. 1.

The second optimized variant is conv3d-hmpp2. Note that each GPU thread
along the threadified forj,k executes the entire innermost fori. Hence, each
thread will repeat reads to the array input in the x-axis in consecutive it-
erations of fori (see lines 7–13 of Fig. 1a). Old values can be stored in lo-
cal registers reducing the needs of memory bandwidth. Algorithm 2 detects
this situation as follows. The chrecs for the first three accesses to array in-
put are CHREC input1 = [{0,+, 1}][{0,+, 1}][{0,+, 1}], CHREC input2 =
[{−1,+, 1}][{0,+, 1}][{0,+, 1}] and CHREC input3 = [{1,+, 1}][{0,+, 1}]
[{0,+, 1}]. For T0, the instantiated chrecs are CHREC inputT0

1 =
[{0,+, 1}][{0}][{0}], CHREC inputT0

2 = [{−1,+, 1}][{0}][{0}] and
CHREC inputT0

3 = [{1,+, 1}][{0}][{0}] (line 5). Thus,⋂3
k=1 CHRECS inputT0

k = [{1,+, 1}][{0}][{0}] 6= ∅ (line 6 of Alg. 2) and,
as input is only read, copies of already read values can be kept in registers for
following accesses.

The variant conv3d-hmpp3 exploits, in addition, the shared memory. Con-
tiguous threads repeat accesses to some positions in the y, z-plane of the array



Title Suppressed Due to Excessive Length

1 int i, j, l, m, n, k;
2 float A[m][k], B[k][n], C[m][n];
3 float alpha , beta , prod;
4
5 for (i = 0; i < m; i++) {
6 for (j = 0; j < n; j++) {
7 prod = 0;
8 for (l = 0; l < k; l++) {
9 prod += A[i][l] * B[l][j];

10 }
11 C[i][j] = alpha * prod + beta * C[i][j];
12 }
13 }

(a) Source code.

ROOT EXECUTION SCOPE

ES_fori,j (Fig. 3a, lines 5-13)

ES_forl (Fig.   3a, lines 8-10)

K < prod7 >
scalar assignment

K < prod9 >
scalar reduction

K < C11 >
regular reduction

(b) KIR.

Fig. 3: The simple-precision general matrix multiplication (SGEMM).

input. Hence, those values can be stored in the shared memory and be inter-
changed among the threads of a block. Table 2 focuses on the chrecs corre-
sponding to the first two threads T0 and T1 and the accesses performed in
lines 21–27 of Fig. 1a. Algorithm 3 computes the intersections of all the instan-
tiated chrecs (see lines 8–11 of Alg. 3). As can be observed, the intersection is
not empty and therefore the number of accesses to the GPU global memory
is reduced significantly.

5.2 Case Study: SGEMM

The simple-precision general matrix multiplication from the BLAS library [7]
performs the matrix operation

C = α ·A×B + β · C (2)

where A, B, C are m × k, k × n and m × n matrices, respectively, and α, β
are the scale factors for A × B and C. Figure 3a shows an implementation
with two nested loops fori and forj that traverse the matrix C row by row
(see lines 5–6). Each matrix position C[i][j] is computed with the dot product
between the ith row of matrix A and the jth column of B. The dot product is
temporarily stored in the scalar variable prod (see lines 7–10).

The KIR shown in Fig. 3b captures the semantics of Fig. 3a as follows.
Loops fori and forj are perfectly nested, thus a unique execution scope ES fori,j
is created. K<prod7> represents the initialization of the temporary variable
prod at line 7. The computation of the dot product is contained in forl. Hence,
the scalar reduction K<prod9> is attached to ES forl. Finally, K<C11> is a
regular reduction that updates the previous value stored in C[i][j]. As prod is a
privatizable scalar variable, the parts of the KIR referring to its computations



José M. Andión et al.

not instantiated T0 T1

1stdim 2nddim 1stdim 2nddim 1stdim 2nddim

CHRECS A {0,+, 1} {0,+, 1} {0} {0,+, 1} {0} {0,+, 1}
CHRECS B {0,+, 1} {0,+, 1} {0,+, 1} {0} {0,+, 1} {1}
CHRECS C {0,+, 1} {0,+, 1} {0} {0} {0} {1}

Table 3: Chrecs for the accesses to arrays A, B and C in SGEMM.

are shaded in order to be omitted in the discovery of parallelism. Thus, only
K<C11> decides if the source code is parallelizable. As mentioned in Sect. 4.1,
a regular reduction diKernel represents conflict-free loop iterations and it is
therefore parallelizable.

From the point of view of the locality, the challenge of SGEMM is to handle
efficiently the tradeoff between opposite array traversals: row-major for C and
A, and column-major for B. On the CPU, the general solution is to apply
loop tiling: matrices are computed in small tiles to keep data in cache. This
approach can be also applied on the GPU using the shared memory as cache
and being aware of coalescing.

The first variant of SGEMM is the sequential code shown in Fig. 3a
(sgemm-cpu). In addition, we have selected the cblas sgemm function of the
non-clustered, threaded part of the Intel MKL library [16] to build the sgemm-
mkl variant.

The first OpenHMPP variant is sgemm-hmpp1. It is trivially built by of-
floading to the GPU the same code as sgemm-cpu. Table 3 shows the chrecs
for this variant, which are analyzed by Alg. 1 as follows. Regarding A, all the
threads of a warp have the same chrecs and thus access the same memory
position (see line 20 of Alg. 1). Regarding B, coalescing is maximized because
the chrecs of the first dimension are the same while the chrecs of the second
one define a contiguous range (line 15). Finally, the same situation holds for
C and thus accesses are coalesced.

The second OpenHMPP variant is sgemm-hmpp2. Algorithm 4 transforms
the source code of Fig. 3a as follows. The scalar variable prod is promoted to an
array prod[∆], and thus a new loop fort is created to enclose all its definitions
and uses (see lines 3–6 of Alg. 4). The step of the outer fori is incremented by
∆, and uses of the loop index i inside fort are replaced by i+ t.

The third OpenHMPP variant is sgemm-hmpp3. For the reasons mentioned
in Sect. 4.2, our technique first performs loop fission in the new fort giving
place to fort1 (prod initialization), fort2 (dot product between the row of A
and the column of B), and fort3 (computation with the old value of C). Next,
fullunroll directives are inserted in fort1 and fort3. In order to fully unroll
fort2, it is first interchanged with forl. This way, the GPU compilers are able
to store prod[∆] in registers.

The fourth OpenHMPP variant is sgemm-hmpp4. Algorithm 2 presented
a method to store reused data in registers. In this case, as the number of
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GFLOPS
nova pluton

min avg max min avg max

conv3d-cpu 1.42 2.54 2.72 - - -
conv3d-hmpp1 13.42 13.78 14.03 31.40 38.74 46.95
conv3d-hmpp2 18.76 19.80 20.28 51.08 67.47 78.79
conv3d-hmpp3 41.50 66.32 70.60 97.02 109.48 118.75

Table 4: Minimum, average and maximum GFLOPS of CONV3D variants.

registers is finite and the previous transformation in sgemm-hmpp3 increased
register pressure, we have used the shared memory to store slices of B.

Finally, the last variant is sgemm-cublas, the implementation provided by
the NVIDIA CUBLAS library [24]. CUBLAS has been designed assuming a
column-major order, thus a transformation is needed before and after calling
the library.

Overall, in this section we have shown how two representative sequential
codes from scientific applications can be automatically transformed into par-
allel counterparts that target the GPU programming features mentioned in
points (1)–(8) of Sect. 2 following the technique introduced in Sect. 4. The
next section presents the performance evaluation of these case studies.

6 Performance Evaluation

Two NVIDIA-based heterogeneous systems were used to carry out our exper-
iments. The first one is nova, the CAPS Compute Lab, based on Tesla S1070
(compute capability 1.3 —Tesla architecture—). The GPU contains 30 mul-
tiprocessors with 8 cores each, for a total of 240 CUDA cores at 1.30 GHz.
The total amount of global memory is 4 GB at 800 MHz. Each block (of up
to 512 threads) can access 16 KB of shared memory and 16384 registers. The
accelerator is connected to a host system consisting of 2 Intel Xeon X5560
quad-core processors at 2.80 GHz and 12 GB of memory.

The second system is pluton, the cluster of the Computer Architecture
Group at the University of A Coruña, based on Tesla S2050 (compute capa-
bility 2.0 —Fermi architecture—). The GPU contains 14 multiprocessors with
32 cores each, for a total of 448 CUDA cores at 1.15 GHz. The total amount
of global memory is 3 GB at 1546 MHz with ECC disabled. Each block (of up
to 1024 threads) can access 48 KB of shared memory, 16 KB of L1 cache and
32768 registers. The amount of L2 cache is 768 KB. The accelerator is con-
nected to a host system consisting of 2 Intel Xeon X5650 six-core processors
at 2.66 GHz and 12 GB of memory.
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Fig. 4: Average GFLOPS of CONV3D variants.

6.1 Performance Evaluation of CONV3D

We have run the 216 experiments corresponding to all matrix sizes for sizex,
sizey and sizez values in 128, 256, 384, 512, 640 and 768. In each experiment,
we have measured GFLOPS for all CONV3D variants, shown in Table 4. Our
experiments revealed that the obtained GFLOPS did not show a significant
variation with the dimensions of the tested matrices. This is due to the fact that
the limiting factor of the performance is the memory access bandwidth. For all
tested sizes, even the smallest ones, a 50 % GPU occupancy is approximately
achieved, which is a good value for this sort of codes [35].

Figure 4 presents the performance evaluation of the CPU and the GPU-
accelerated variants on our experimental platforms. The offloading of the
computations on the GPU, with a loop interchange (conv3d-hmpp1 ), gets a
speedup of 5.43x on nova and 15.27x on pluton. Note the big step in per-
formance improvement between conv3d-hmpp2 and conv3d-hmpp3 due to the
use of the shared memory: 3.35x on nova and 1.62x on pluton. The improve-
ment is less impressive on pluton because of the memory caches present in the
Fermi cards that partially cover the functionality exploited by our automatic
locality-aware technique.

6.2 Performance Evaluation of SGEMM

We have run the 6859 experiments corresponding to all matrix sizes for m,
n, and k values in 128, 256, 384, 512, 640, 768, 896, 1024, 1152, 1280, 1408,
1536, 1664, 1792, 1920, 2048, 4096, 6144 and 8192. In each experiment, we
have measured GFLOPS for all SGEMM variants.

Table 5 and Fig. 5 present the performance evaluation of the CPU and the
GPU-accelerated variants. On average, sgemm-mkl is better than sgemm-
hmpp1 : 5.26x on nova and 1.96x on pluton. However, for most combinations of
m,n, k < 2048, sgemm-hmpp1 is better than sgemm-mkl (up to 31.50x for
m = 256, n = 128 and k = 512 on pluton). Hence, in contrast to CONV3D,
the performance of SGEMM varies significantly for different matrix sizes (as
can be observed in the minimum, average and maximum columns of Table 5)
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GFLOPS
nova pluton

min avg max min avg max

sgemm-cpu 0.13 0.51 1.40 - - -
sgemm-mkl 1.43 114.99 183.70 - - -
sgemm-hmpp1 8.10 21.85 27.41 15.41 58.77 79.22
sgemm-hmpp2 3.33 21.80 27.69 3.72 51.57 78.83
sgemm-hmpp3 6.93 39.19 64.81 12.04 119.56 134.74
sgemm-hmpp4 7.12 295.45 354.46 9.20 357.38 420.63
sgemm-cublas 71.30 325.91 370.12 38.78 486.41 650.16

Table 5: Minimum, average and maximum GFLOPS of SGEMM variants.
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Fig. 5: Average GFLOPS of SGEMM variants.

and the simple use of the GPU does not always improve the best CPU variant.
For most of the tested sizes, sgemm-hmpp2 slightly improves sgemm-hmpp1
on nova, but not on pluton. This is due to the fact that accesses to prod[∆] in
sgemm-hmpp2 require to read and write from the GPU memory and not from
the registers. The performance improvement of sgemm-hmpp3 with respect
to sgemm-hmpp1 is bigger (1.79x on nova and 2.03x on pluton) because the
transformation allows the compiler to store prod[∆] in the GPU registers. How-
ever, the biggest improvement factor is the usage of the GPU shared memory,
as can be observed in the sgemm-hmpp4 results.

The best variant on nova for the majority of cases is sgemm-cublas. How-
ever, it is only 10 % better than sgemm-hmpp4 on average. In fact, sgemm-
hmpp4 is the best for k < 1024, and sgemm-mkl is the best for m,n = 128 with
512 ≤ k ≤ 1792. Regarding average performance on pluton, sgemm-cublas is
clearly the best, being 36 % faster than sgemm-hmpp4. Variant sgemm-cublas
is only bested by sgemm-hmpp4 for m,n ∈ {128, 256}, and by sgemm-mkl for
m,n = 128 with k > 1152. Nevertheless, we have demonstrated that a variant
automatically generated by applying to the original sequential code basic loop
transformations to exploit locality is competitive with the highly optimized
NVIDIA’s CUBLAS implementation.
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7 Related Work

In this paper we have introduced a new technique to tune the performance of
automatically generated GPU parallel code exploiting locality through basic
loop transformations. This technique has been successfully applied to repre-
sentative case studies, namely CONV3D and SGEMM. There exist in the lit-
erature previous works about the optimization of the execution on the GPU of
these case studies (for instance, [12] and [36] for CONV3D, [19] for SGEMM)
that are based on templates or domain-specific languages. In contrast, our
approach is devoted to be general.

Similar efforts to automatically generate code for GPUs from a sequential
program are being developed. Parallware for OpenACC [3], in alpha state, also
employs technology based on diKernels. However, unlike our approach, it does
not support locality exploitation.

There also exist other active approaches based on the polyhedral model.
C-to-CUDA [6], based on PLUTO [9], looks for a region as large as possible
and transforms memory accesses to be coalesced (using the shared memory if
it is not possible). The shared memory is also employed to store the arrays
that are reused in the same thread, but the reuse of data between the threads
of a block is not considered.

PPCG [33] also searches for the larger possible region of code and the
parallelization strategy evolved from PLUTO. It applies an elaborated policy
for the use of the memory hierarchy grouping array references to copy parts of
the global memory. Reused data are placed in registers. If there is any reuse or
the original accesses were not coalesced, then it places the data in the shared
memory (with coalesced accesses).

Par4All [15] uses abstract interpretation for array regions, which also in-
volves polyhedra. It treats each loop nest independently, generating a CUDA
kernel for each one. Par4All does not consider the exploitation of reuse in
the registers or the shared memory: all accesses are performed directly on the
global memory. However, it performs powerful inter-procedural analysis on the
input code.

Jablin et al. [17,18] propose a framework that automatically generates
pipeline parallelizations and provides software-only shared memory. The mem-
ory allocation system ensures that addresses of equivalent allocation units on
the CPU and GPU are equal, relieving the runtime library of the burden
of translation and communication optimization. The compiler inserts appro-
priate calls into the original program. The pipeline parallelization technique
exploits the fact that GPUs have abundant parallel computing resources but
communication between them can be very expensive. If the loaded values were
constant, each of the threads could execute the load redundantly, reducing
communication overhead at the expense of computational efficiency.

In summary, most approaches partially exploit the GPU memory hierar-
chy and generate low-level, difficult to understand, CUDA code. In contrast,
our proposal based on OpenHMPP directives provides understandable and
portable code easing the interaction between programmers and application-
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domain experts. Additionally, with the inclusion of auto-tuning techniques [14],
OpenHMPP has demonstrated to be able to obtain even better performance
than hand-coded CUDA/OpenCL codes.

8 Conclusions and Future Work

This paper has introduced a new KIR-based locality-aware automatic paral-
lelization technique that targets GPU-based heterogeneous systems. Our pro-
posal is devoted to exploit data locality in the complex GPU memory hierarchy
in order to generate efficient code. It takes into account the most impacting
GPU programming features: loop threadification, thread grouping, coalesced
access to global memory, and maximum usage of registers and shared memory.
We have successfully applied this technique to two representative case studies
extracted from compute-intensive scientific applications (namely, CONV3D,
the three-dimensional convolution, and SGEMM, the simple-precision general
matrix multiplication). We have been able to model accesses to n-dimensional
arrays conveniently thanks to the chains of recurrences. The usage of OpenHMPP
directives enabled a great understandability and portability of the generated
GPU code. The performance evaluation on NVIDIA GPUs (with two different
core architectures) has corroborated the effectiveness of our approach.

As future work, we will design and implement a new automatic partitioning
algorithm of the KIR to handle the interactions between computations in
full-scale applications. Auto-tuning approaches will be incorporated to select
the variant with best performance on a given hardware architecture. We will
also test our proposals with a larger benchmark suite and on other manycore
accelerators.
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